Comparison and nonoscillation results for perturbed nonlinear differential equations

Summary

Nonoscillation theorems for perturbed second order nonlinear differential equations are obtained. A nonlinear Picone type identity is introduced to obtain some Sturm-Picone type comparison theorems for nonlinear equations.

Bibliography

  1. [1]

    M. S. P. Eastham,The Picone identity for self-adjoint differential equations of even order, Mathematika,20 (1973), pp. 197–200.

    MathSciNet  Article  Google Scholar 

  2. [2]

    J. R. Graef,A comparison and oscillation result for second order nonlinear differential equations, to appear.

  3. [3]

    J. R. Graef -P. W. Spikes,A nonoscillation result for second order ordinary differential equations, Rend. Accad. Sci. Fis. Mat. Napoli, (4)41 (1974), pp. 92–101, (1975).

    MathSciNet  MATH  Google Scholar 

  4. [4]

    J. R. Graef -P. W. Spikes,Sufficient conditions for nonoscillation of a second order nonlinear differential equation, Proc. Amer. Math. Soc.,50 (1975), pp. 289–292.

    MathSciNet  Article  Google Scholar 

  5. [5]

    J. R. Graef -P. W. Spikes,Sufficient conditions for the equation (a(t)x′)′ + h(t,x,x′) + + q(t)f(x,x′) = e(t,x,x′) to be nonoscillatory, Funkcial. Ekvac.,18 (1975), pp. 35–40.

    MathSciNet  MATH  Google Scholar 

  6. [6]

    J. R. Graef -P. W. Spikes,Nonoscillation theorems for forced second order nonlinear differential equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8)59 (1975), pp. 694–701, (1976).

    MathSciNet  MATH  Google Scholar 

  7. [7]

    M. E. Hammett,Oscillation and nonoscillation theorems for nonhomogeneous linear differential equations of second order, Ph. D. Dissertation, Auburn University (1967).

  8. [8]

    M. S. Keener,On the solutions of certain linear nonhomogeneous second-order differential equations, Applicable Analysis,1 (1971), pp. 57–63.

    MathSciNet  Article  Google Scholar 

  9. [9]

    K. Kreith,Oscillation Theory, Lecture Notes in Mathematics, no. 324, Springer-Verlag, Ne York (1973).

    Google Scholar 

  10. [10]

    K. Kreith,A Picone identity for fourth order differential equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8)52 (1972), pp. 455–456.

    MathSciNet  MATH  Google Scholar 

  11. [11]

    V. N. Ševelo -V. G. Štelik,Certain problems concerning the oscillation of solutions of nonlinear nonautonomous second-order equations, Soviet Math. Dokl.,4 (1963), pp. 383–387.

    Google Scholar 

  12. [12]

    M. Švec,On various properties of the solutions of third- and fourth-order linear differential equations, in « Differential Equations and Their Applications, Proceedings of a Conference held in Prague, September, 1962 », Academic Press, Ne York (1963), pp. 187–198.

    Google Scholar 

  13. [13]

    C. A. Swanson,Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York (1968).

    Google Scholar 

  14. [14]

    C. A. Swanson,Picone's identity, Rend. Mat., (6)8 (1975), pp. 373–397.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Entrata in Redazione il 19 gennaio 1977.

Research supported by the Mississippi State University Biological and Physical Sciences Research Institute.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graef, J.R., Spikes, P.W. Comparison and nonoscillation results for perturbed nonlinear differential equations. Annali di Matematica 116, 135–142 (1978). https://doi.org/10.1007/BF02413870

Download citation

Keywords

  • Differential Equation
  • Nonlinear Equation
  • Nonlinear Differential Equation
  • Type Identity
  • Comparison Theorem