Curvature measures of convex bodies

Summary

The curvature measures, introduced by Federer for the sets of positive reach, are investigated in the special case of convex bodies. This restriction yields additional results. Among them are:(5.1), an integral-geometric interpretation of the curvature measure of order m, showing that it measures, in a certain sense, the affine subspaces of codimension m+1 which touch the convex body;(6.1), an axiomatic characterization of the (linear combinations of) curvature measures similar to Hadwiger's characterization of the quermassintegrals of convex bodies;(8.1), the determination of the support of the curvature measure of order m, which turns out to be the closure of the m-skeleton of the convex body. Moreover we give, for the case of convex bodies, a new and comparatively short proof of an integral-geometric kinematic formula for curvature measures.

References

  1. [1]

    A. Aeppli, Einige Ähnlichkeits- und Symmetriesätze für differenzierbare Flächen im Raum, Comment. Math. Helvet.,33 (1959), pp. 174–195.

    MathSciNet  Article  Google Scholar 

  2. [2]

    A. D. Aleksandrov,Zur Theorie der gemischten Volumina von konvexen Körpern. — I:Verallgemeinerung einiger Begriffe der Theorie der konvexen Körper (Russian), Mat. Sbornik, N.S.,2 (1937), pp. 947–972.

    MATH  Google Scholar 

  3. [3]

    A. D. Aleksandrov,Zur Theorie der gemischten Volumina von konvexen Körpern. — II:Neue Ungleichungen zwischen gemischten Volumina und ihre Anwendungen (Russian), Mat. Sbornik, N.S.,2 (1938), pp. 1205–1238.

    MATH  Google Scholar 

  4. [4]

    A. D. Aleksandrov, Über die Oberflächenfunktion eines konvexen Körpers(Russian), Mat. Sbornik,6 (48) (1939), pp. 167–174.

    MATH  Google Scholar 

  5. [5]

    A. D. Aleksandrov,Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it (Russian), Uchenye Zapiski Leningrad. Gos. Univ., Math. Ser.,6 (1939), pp. 3–35.

    MathSciNet  Google Scholar 

  6. [6]

    A. D. Aleksandrov,Existence and uniqueness of a convex surface with a given integral curvature, Comptes Rendus (Doklady) Acad. Sci. URSS,35, No. 5 (1942), pp. 131–134.

    MathSciNet  MATH  Google Scholar 

  7. [7]

    A. D. Aleksandrov,Die innere Geometrie der knovexen Flächen, Akademie-Verlag, Berlin (1955).

    Google Scholar 

  8. [8]

    R. B. Ash,Measure, integration, and functional analysis, Academic Press, New York and London (1972).

    Google Scholar 

  9. [9]

    H. Bauer,Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, 2nd ed., W. de Gruyter, Berlin and New York (1974).

    Google Scholar 

  10. [10]

    H. Busemann,Convex surfaces, Interscience Publishers, New York (1958).

    Google Scholar 

  11. [11]

    G. Ewald -D. G. Larman -C. A. Rogers,The directions of the line segments and of the r-dimensional balls on the boundary of a convex body in Euclidean space, Mathematika,17 (1970), pp. 1–20.

    MathSciNet  Article  Google Scholar 

  12. [12]

    H. Federer,Curvature measures, Trans. Amer. Math. Soc.,93 (1959), pp. 418–491.

    MathSciNet  Article  Google Scholar 

  13. [13]

    H. Federer,Geometric measure theory, Springer, Berlin, Heidelberg, and New York (1969).

    Google Scholar 

  14. [14]

    W. Fenchel -B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selsk. Mat.-Fys. Medd.,16 (3) (1938), pp. 1–31.

    MATH  Google Scholar 

  15. [15]

    W. J. Firey,An integral-geometric meaning for lower order area functions of convex bodies, Mathematika,19 (1972), pp. 205–212.

    MathSciNet  Article  Google Scholar 

  16. [16]

    W. J. Firey,Kinematic measures for sets of support figures, Mathematika,21 (1974), pp. 270–281.

    MathSciNet  Article  Google Scholar 

  17. [17]

    W. J. Firey - R. Schneider,The size of skeletons of convex bodies, Geometriae Dedicata (to appear).

  18. [18]

    H. Hadwiger, Über eine Mittelwertformel für Richtungsfunktionale im Vektorraum und einige Anwendungen, J. reine angew. Math.,185 (1943), pp. 241–252.

    MathSciNet  MATH  Google Scholar 

  19. [19]

    H. Hadwiger,Altes und Neues über konvexe Körper, Birkhäuser-Verlag, Basel and Stuttgart (1955).

    Google Scholar 

  20. [20]

    H. Hadwiger,Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, Göttingen, and Heidelberg (1957).

    Google Scholar 

  21. [21]

    H. Hadwiger, Eine Erweiterung der kinematischen Hauptformel der Integralgeometrie, Abh. Math. Sem. Univ. Hamburg,44 (1975), pp. 84–90.

    MathSciNet  Article  Google Scholar 

  22. [22]

    H. Hadwiger,Eikörperrichtungsfunktionale und kinematische Integralformeln, Universität Bern (1975) (Manuscript).

  23. [23]

    W. Maak,Differential- und Integralrechnung, 2nd ed., Vandenhoeck und Ruprecht, Göttingen (1960).

    Google Scholar 

  24. [24]

    V. A. Zalgaller,k-dimensional directions singular for a convex body F in Rn (Russian), Zapiski naučn. Sem. Leningrad. Otd. Mat. Inst. Steklov,27 (1972), pp. 67–72. English translation: J. Soviet Math.,3 (1975), pp. 437–441.

    Google Scholar 

  25. [25]

    G. Matheron,Random sets and integral geometry, Wiley, New York et al. (1975).

    Google Scholar 

  26. [26]

    P. McMullen,Non-linear angle-sum relations for polyhedral cones and polytopes, Math. Proc. Camb. Phil. Soc.,78 (1975), pp. 247–261.

    MathSciNet  Article  Google Scholar 

  27. [27]

    P. McMullen -C. C. Shephard,Convex polytopes and the upper bound conjecture, London Math. Soc. Lecture Note Series 3, Cambridge Univ. Press, Cambridge (1971).

    Google Scholar 

  28. [28]

    J. Neveu,Mathematische Grundlagen der Wahrscheinlichkeitstheorie, R. Oldenbourg Verlag, München and Wien (1969).

    Google Scholar 

  29. [29]

    L. S. Pontrjagin,Topologische Gruppen, Teil 1, Teubner, Leipzig (1957).

  30. [30]

    R. Schneider, Über eine Integralgleichung in der Theorie der konvexen Körper, Math. Nachr.,44 (1970), pp. 55–75.

    MathSciNet  Article  Google Scholar 

  31. [31]

    R. Schneider, Kinematische Berührmaße für konvexe Körper, Abh. Math. Sem. Univ. Hamburg,44 (1975), pp. 12–23.

    MathSciNet  Article  Google Scholar 

  32. [32]

    R. Schneider, Kinematische Berührmaße für konvexe Körper und Integralrelationen für Oberflächenmaße, Math. Ann.,218 (1975), pp. 253–267.

    MathSciNet  Article  Google Scholar 

  33. [33]

    R. Schneider, Kritische Punkte und Krümmung für die Mengen des Konvexringes, L'Enseignement Math.,23 (1977), pp. 1–6.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Entrata in Redazione il 14 dicembre 1976.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schneider, R. Curvature measures of convex bodies. Annali di Matematica 116, 101–134 (1978). https://doi.org/10.1007/BF02413869

Download citation

Keywords

  • Linear Combination
  • Convex Body
  • Additional Result
  • Short Proof
  • Curvature Measure