Quasilinear elliptic systems


The quasilinear elliptic system

$$\sum\limits_{l{\text{ = 1}}}^n {\frac{\partial }{{\partial x_l }}\left\{ {\sum\limits_{j = 1}^N {\sum\limits_{m = 1}^n {C_{ij}^{lm} [x,U]\frac{{\partial U^j }}{{\partial x_m }} + B_i^l [x,U]} } } \right\} + F_i [x,U] = 0} $$

1⩽i⩽N, x in a bounded domain Ω, and U=0 on the boundary of Ω is studied. Under various assumptions regarding the auxiliary functions C, B, and F, the author studies weak existence, uniqueness, and stability in H 10 (Ω). In addition, by requiring C lmij =0 for i ≠ j, it is proved that such weak solutions have bounded L(Ω) norm and satisfy a Hölder condition on the closure of Ω.


  1. [1]

    L. BersF. JohnM. Schechter,Partial Differential Equations, Wiley (Interscience), New York, 1964.

    Google Scholar 

  2. [2]

    F. E. Browder,Functional analysis and partial differential equations — I, Ann. of Math.,138 (1959), pp. 55–79.

    MathSciNet  Article  Google Scholar 

  3. [3]

    F. E. Browder,Existence theory of boundary value problems for quasilinear elliptic systems with strongly nonlinear lower order terms, Partial Differential Equations (Proc. Sympos. Pure Math., vol. XXIII, Univ. of Calif., Berkeley, Calif., 1971), Amer. Math. Soc., Providence (1973), pp. 269–286.

  4. [4]

    J. R. CannonW. T. FordA. V. Lair,Quasilinear parabolic systems, J. Diff. Eqs.20 (1976), pp. 441–472.

    MathSciNet  Article  Google Scholar 

  5. [5]

    W. T. Ford,On the first boundary value problem for [h(x, x′, t)]′ = f(x, x′, t), Proc. of the Amer. Math. Soc.,35 (1972), pp. 491–497.

    MathSciNet  MATH  Google Scholar 

  6. [6]

    G. H. HardyJ. E. LittlewoodG. Polya,Inequalities, 2nd ed., Cambridge Univ. Press, New York, 1952.

    Google Scholar 

  7. [7]

    A. V. Ivanov,The solvability of the Dirichlet problem for certain classes of second order elliptic systems, Pric. of the Steklov Inst. Math.,125 (1973), pp. 49–79.

    MathSciNet  Google Scholar 

  8. [8]

    O. A. LadyzhenskayaN. N. Ural'tseva,Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.

    Google Scholar 

  9. [9]

    A. V. Lair,A Rellich compactness theorem for sets of finite volume, Amer. Math. Monthly83 (1976), pp. 350–351.

    MathSciNet  Article  Google Scholar 

  10. [10]

    C. Miranda,Partial Differential Equations of Elliptic Type, 2nd rev. ed., Springer-Verlag, New York, 1970.

    Google Scholar 

  11. [11]

    H. L. Royden,Real Analysis, 2nd ed., MacMillan, New York, 1968.

    Google Scholar 

  12. [12]

    J. T. Schwartz,Nonlinear Functional Analysis, Gordon and Breach, New York, 1969.

    Google Scholar 

  13. [13]

    M. I. Visik,Quasi-linear strongly elliptic systems of differential equations in divergence form, Trans. Moscow Math. Soc., 1963, pp. 148–208.

  14. [14]

    K. Yosida,Functional Analysis, 2nd ed., Springer-Verlag, New York, 1968.

    Google Scholar 

Download references

Author information



Additional information

Entrata in Redazione il 23 giugno 1976.

These results are contained in the author's doctoral dissertation written under the direction of Prof.W. T. Ford at Texas Tech. University.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lair, A.V. Quasilinear elliptic systems. Annali di Matematica 116, 17–56 (1978). https://doi.org/10.1007/BF02413866

Download citation


  • Weak Solution
  • Bounded Domain
  • Auxiliary Function
  • Elliptic System
  • Author Study