Advertisement

Annali di Matematica Pura ed Applicata

, Volume 114, Issue 1, pp 69–85 | Cite as

Applications of linear programming theory to existence and uniqueness classes for the cauchy problem

  • Stanly Steinberg
Article

Keywords

Cauchy Problem Programming Theory Uniqueness Class Linear Programming Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Gelfand -G. Shilov,Generalized Functions, Academic Press, New York, 1967.Google Scholar
  2. [2]
    L. R. Volevic,A problem in linear programming stemming from differential equations, Uspehi Mat. Nauk,18, n. 3(111) (1963), pp. 155–162.MathSciNetGoogle Scholar
  3. [3]
    A. P. Calderon,Existence and uniqueness theorems for systems of partial differential equations, Proc. Sympos. Fluid. Dynamics and Appl. Math. (Univ. of Maryland, 1961).Google Scholar
  4. [4]
    L. Nirenberg,An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry,6 (1972), pp. 561–576.MATHMathSciNetGoogle Scholar
  5. [5]
    S. Steinberg,Existence and uniqueness of solutions of hyperbolic equations which are not necessarily strictly hyperbolic, J. Diff. Eq.17 (1975), pp. 119–153.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    D. Gale,The Theory of Linear Economic Models, McGraw Hill, New York, 1960.Google Scholar
  7. [7]
    L. Cooper -D. Steinberg,Methods and Applications of Linear Programming, W. B. Saunders Co., Philadelphia, 1974.Google Scholar
  8. [8]
    B. L. Fox -B. L. Landi,An algorithm for identifying the ergodic subchains and transient states of a stochastic matrix, ACM 11, n. 9 (1968), pp. 619–621.CrossRefGoogle Scholar
  9. [9]
    S. Steinberg -F. Treves,Pseudo-Fokker Planck equations and hyperdifferential operators, J. Diff. Eq.,2 (1970), pp. 333–366.CrossRefMathSciNetGoogle Scholar
  10. [10]
    F. Treves,Ovcyannikov Theorem and Hyperdifferential Operators, I.M.P.A., Rio de Janeiro, 1969.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1977

Authors and Affiliations

  • Stanly Steinberg
    • 1
  1. 1.AlbuquerqueU.S.A.

Personalised recommendations