Annali di Matematica Pura ed Applicata

, Volume 18, Issue 1, pp 77–96 | Cite as

Plane sections of the tangent surface of a space curve

  • Buchin Su
Article

Keywords

Plane Section Space Curve Tangent Surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. (1).
    E. J. Wilczynski,Projective differential geometry of curves and ruled surfaces, (Leipzig, Teubner, 1906).Google Scholar
  2. (2).
    B. Su,On certain quadratic cones projectively connected with a space curve and a surface, « Tôhoku Math. Journ. »,38 (1933), 233–244.MATHGoogle Scholar
  3. (3).
    ConcerningBompiani osculants of a plane curve with an inflexion cfr.E. Bompiani, Per lo studio proiettivo-differenziale della singolarità, « Boll. dell'Unione Mat. Italiana », 5 (1926), 118–120. See also my paper:Note on the projective differential geometry of space curves, « Journ. Chin. Math. Soc. »,2 (1937), 98–137.MATHGoogle Scholar
  4. (4).
    I. Popa, Geometria proiettivo-differenziale delle singolarità delle curve piane, « Rend. dei Lincei », (VI),25 (1937), 220–222.MATHGoogle Scholar
  5. (5).
    E. Bompiani,Sulle curve sghembe, « Scritti matematici offerti a Luigi Berzolari », Pavia (1936), 515–552.Google Scholar
  6. (6).
    For the details cfr. my paper:On the intersection of two curves in space, « Tôhoku Math Journ. »,39 (1934), 226–232.Google Scholar
  7. (7).
    Cfr. e. g. my paper:Invariants of intersection of two curves in space, « Sci. Rep. Tôhoku Imp. Univ. », (I),25 (1936), 22–33.Google Scholar
  8. (8).
    I. Popa, loc. cit, § 1.Google Scholar
  9. (9).
    E. Bompiani, Sulle curve sghembe, loc. cit. «Google Scholar
  10. (10).
    Cfr.B. Su,Note on the projective differential geometry of space curves, loc cit., « p. 113.Google Scholar
  11. (11).
    Cfr.B. Su,Note on ..., loc. cit., « p. 115.Google Scholar
  12. (12).
    Cfr.B. Su,Note on ...; loc. cit., « p. 118.Google Scholar
  13. (13).
    Cfr. my paper:Invariants ..., loc. cit., p. 24.Google Scholar
  14. (14).
    R. Calapso,Sugli enti proiettivi legati al generico punto di una superficie, « Atti Acad. Gioenia », Catania, (5),19 (1933), Mem. XIV, 1–6. I was not aware of the cone of Calapso until a paper of E. Bortolotti appeared. Cfr.Enea Bortolotti,Quadriche di Moutard e fascio canonico, « Rend. R. Accad. dei Lincei », (VI),25 (1937), 158–165.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1939

Authors and Affiliations

  • Buchin Su
    • 1
  1. 1.TaihoChina

Personalised recommendations