Annali di Matematica Pura ed Applicata

, Volume 84, Issue 1, pp 1–31 | Cite as

Sulla influenza dell'effetto Hall nella propagazione di onde magnetofluidodinamiche iu un fluido incomprimibile

  • Giulio Mattei


Si esamina l'influenza dell'effetto Hall sulla propagazione ondosa it un fluido incomprimibile descritto dalle equazioni della magnetofluidodinamica nello schema del continuo.

Nella parte I si studia dapprima la propagazione di onde piane di piccola ampiezza e poi quella delle onde di ampiezza finita. Nella parte II l'indagine é estesa alle onde cilindriche e nella parte III infine si discute la propagazione di onde piane e cilindriche nel caso in cui nello stato imperturbato il fluido non sia in quiete, bensì in moto uniforme.

Nel lavoro si tiene conto delle azioni dissipative della viscosità e della conducibilità elettrica finita.


In this paper we discuss wave propagation in an incompressible conducting fluid considered as a continuous medium taking account of the Hall effect.

In Part I we first consider the propagation of plane waves of small amplitude and secondly waves of finite amplitude.

In Part II the discussion is extended to cylindrical waves and in Part III the propagation of plane and cylindrical waves is examined when in the unperturbed state the fluid is not at rest, but in a state of uniform motion.

The dissipative effects of viscosity and finite electrical conductivity are taken into account in the present paper.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Spitzer,Physics of fully ionized gases, Interscience, New York, 1962.Google Scholar
  2. [2]
    T. G. Cowling,Magnetohydrodynamics, Interscience, New York, 1957.Google Scholar
  3. [3]
    T. Kihara,Macroscopic foundation of plasma dynamics, J. Phys. Soc. Japan, 13, 1958, pp. 473–481.CrossRefMathSciNetGoogle Scholar
  4. [4]
    V. B. Baranov, G. A. Liubimov,On the form of the generalized Ohm's law in a completely ionzed gas, P.M. M. 25, 1961, pp. 694–700.MATHGoogle Scholar
  5. [5]
    G. A. Liubimov,On the form of Ohm's law in magnetohydrodynamics, P.M.M. 25, 1961, pp. 913–929.MathSciNetGoogle Scholar
  6. [6]
    H. Alfvén,Cosmical electro-dynamics, Oxford, 1963.Google Scholar
  7. [7]
    V. C. A. Ferraro, C. Plumpton,Magneto-fluid mechanics, Oxford, 1966.Google Scholar
  8. [8]
    R. Jancel, Th. Kahan,Électrodynamique des plasmas, Tome 1, Dunod, Paris, 1963.Google Scholar
  9. [9]
    G. W. Sutton, A. Sherman,Engineering magnetohydrodynamics, Mc Graw-Hill, New York, 1965.Google Scholar
  10. [10]
    E. H. Holt, R. E. Haskel,Foundations of plasma dynamics, McMillan, New York, 1965.Google Scholar
  11. [11]
    C. Agostinelli,Magnetofluidodinamica, Monografia CNR, Cremonese, Roma, 1966.Google Scholar
  12. [12]
    N. G. Van Kampen, B. U. Felderhof,Theoretical methods in plasma Physics, North-Holland, Amsterdam, 1967.MATHGoogle Scholar
  13. [13]
    B. S. Tanenbaum,Plasma Physics, Mc Graw-Hill, New York, 1967.Google Scholar
  14. [14]
    I. B. Chekmarev,The steady flow of a weakly ionized gas between parallel plates assuming anisotropic conductivity, P.M.M., 25, 1961, pp. 701–707.Google Scholar
  15. [15]
    E. G. Sakhnovskii, Ia. S. Ufliand,The influence of anisotropic conductivity on the unsteady motion of a conducting gas in a plane channel, P.M.M., 26, 1962, pp. 806–815.MathSciNetGoogle Scholar
  16. [16]
    Ia. S. Ufliand,Nonstationary, plane, parallel flow of a viscous electrically-conducting gas with anisotropic conductivity,P.M.M., 26, 1962, pp. 1267–1275.MathSciNetGoogle Scholar
  17. [17]
    L. Rai,Hall effects on thermal instability in a rotating layer of a conducting fluid, Canadian J. Phys., 46, 1968, pp. 2533–2537.Google Scholar
  18. [18]
    S. C. Agrawal,Rayleigh-Taylor instability with Hall-currents, J. Phys. Soc. Japan, 26, 1969, pp. 561–565.CrossRefGoogle Scholar
  19. [19]
    R. Becker,Teoria della elettricità, Sansoni, Firenze, 1949.Google Scholar
  20. [20]
    C. Agostinelli,Magnetofluidodinamica, Boll. U.M.I., 20, 1965, pp. 1–79.MathSciNetGoogle Scholar
  21. [21]
    Pai Shih-I,Magnetogasdynamics and plasma dynamics, Springer-Verlag, Wien, 1962.MATHGoogle Scholar
  22. [22]
    K. V. Roberts, J. B. Taylor,Magnetohydrodynamic equations for finite Larmor radius, Phys. Rev. Letters, 8, 1962, pp. 197–198.CrossRefMATHGoogle Scholar
  23. [23]
    R. J. Hosking,New instabilities due to Hall effect, Phys. Rev. Letters, 15, 1965, pp. 344–345.CrossRefMathSciNetGoogle Scholar
  24. [24]
    S. P. Talwar, G. L. Kalra,Combined Taylor and Helmholtz instability in hydromagnetics including Hall effect, J. Plasma Physics, 1, 1967, pp. 145–155.Google Scholar
  25. [25]
    A. K. Sen, C. K. Chou,The Hall effect and Kelvin-Helmholtz instability in a plasma, Canadian J. Phys., 46, 1968, pp. 2557–2561.MATHGoogle Scholar
  26. [26]
    A. K. Sen, C. K. Chou,Gravitational instability with Hall effect in a plasma, ibidem,, pp. 2553–2556.MATHGoogle Scholar
  27. [27]
    K. P. Das,Stability of gravitating fluid layer of infinite extent but finite thickness including Hall effect, Canadian J. Phys., 46, 1968, pp. 2201–2205.MATHGoogle Scholar
  28. [28]
    H. K. Hans,Magnetogravitational instability of an unbounded plasma with Hall current and Larmor radius, Ann. d'Astrophysique, 29, 1966, pp. 339–341.Google Scholar
  29. [29]
    K. V. Brushlinskii, A. Morozov,On the evolutionary of equations of magnetohydrodynamics taking the Hall effect into account, P.M.M., 32, 1968, 979–982.Google Scholar
  30. [30]
    J. W. Dungey,Cosmic electrodynamics, Cambridge, 1958.Google Scholar
  31. [31]
    B. Lehnert,Magnetohydrodynamic waves under the action of the Coriolis force, Astrophy. J., 119, 1954, pp. 647–654.CrossRefMathSciNetGoogle Scholar
  32. [32]
    R. Kulsrud,General stability theory in plasma Physics, Rend. Scuola Int. di Fisica E. Fermi, XXV, Academic Press, 1964 pagg. 54–96.MathSciNetGoogle Scholar
  33. [33]
    I. B. Bernstein, E. A. Frieman, M. D. Kruskal, R. M. Kulsrud,An energy principle for hydromagnetic stability problems, Proc. Roy. Soc., A 244, 1958, pp. 17–40.MathSciNetGoogle Scholar
  34. [34]
    A. Jeffrey,Magnetohydrodynamics, Oliver and Boyd, London, 1966.MATHGoogle Scholar
  35. [35]
    S. Chandrasekar,Hydrodynamic and hydromagnetic stability, Oxford, 1961.Google Scholar
  36. [36]
    W. F. Hughes, F. J. Young,The electromagnetodynamics of fluids, J. Wiley, New York, 1966.Google Scholar
  37. [37]
    R. Nardini,Magnetofluidodinamica, C.I.M.E. 1962, 1a Conferenza, Cremonese, Roma, 1962.Google Scholar
  38. [38]
    S. A. Kaplan,The effect of anisotropic conductivity in a magnetic field on the structure of a shock wave in magnetohydrodynamics, Zh. Exsp. Teoret. Fiz., 38, 1960, pp. 252–253.Google Scholar
  39. [39]
    G. A. Liubimov,The structure of magnetohydrodynamic shock waves in a gas with ani sotropic conductivity, P.M.M., 25, 1961, pp. 266–276.MathSciNetGoogle Scholar
  40. [40]
    A. G. Kulikovskii, G. A. Liubimov,The structure of a magnetohydrodynamic shock wave in a gas with an anisotropic conductivity, P.M.M. 26, 1962, pp. 1197–1199.Google Scholar
  41. [41]
    B. P. Leonard,Hall currents in magnetohydrodynamic shock waves, Phys. Fluids 9, 1966, 917–926.CrossRefGoogle Scholar
  42. [42]
    R. J. Tayler,The influence of the Hall effect on a simple hydromagnetic stability problem, Nuclear Fusion, Suppl. Part 3, 1962, pp. 877–881.Google Scholar
  43. [43]
    A. A. Ware,Instability waves in magnetically confined plasmas, Plasma Physics, 3, 1961, pp. 93–97.Google Scholar
  44. [44]
    G. L. Kalra, S. P. Talwar,Magnetogravitational instability of unbounded plasma with Hall effect, Ann. d'Astrophysique, 27, 1964, pp. 102–103.Google Scholar
  45. [45]
    R. J. Hosking,Stability of a self-gravitating plasma cylinder including Hall effect, Phys. Fluids, 10, 1967, 588–90.CrossRefGoogle Scholar
  46. [46]
    P. P. J. M. Schram, T. Tasso,Persistence of MHD-stability in the two fluid model, Nuclear Fusion, 7, 1967, 91–98.Google Scholar
  47. [47]
    G. W. Garrison, H. A. Hassan,Screw instability in a linear Hall accelerator, Phys. Fluids, 10, 1967, pp. 711–718.CrossRefGoogle Scholar
  48. [48]
    N. K. Nayyar, S. K. Trehan,Effect of Hall current on Rayleigh-Taylor instability of a plasma, Phys. Rev. Letters, 17, 1966, pp. 526–528.CrossRefGoogle Scholar
  49. [49]
    R. J. Hosking,Rayleigh-Taylor problem for a Hall plasma, J. Plasma Phys., 2, 1968, pp. 613–616.CrossRefGoogle Scholar
  50. [50]
    M. R. Raghavachar,Thermal instability in the presence of Hall current, Astron. and Astrophy., 2, 1969, pp. 18–21.Google Scholar
  51. [51]
    E. Y. Yantovskii,Longitudinal electromotive forces and Hall effect for channel flow of an ionized gas, Magnetohydrodynamics, The Faraday Press Inc., New York, 1, 1965, pp. 45–49.Google Scholar
  52. [52]
    E. N. Zelichenko, T. E. Milleryan, N. I. Pol'skii,Optimal regimes of magnetogasdynamics channel flows with Hall effects, ibidem, pp. 50–53.Google Scholar
  53. [53]
    H. Hasimoto, G. S. Janowitz,Hall effect in the two-dimensional flow along an insulating plane, Phys. Fluids, 8, 1965, pp. 2234–2239.CrossRefGoogle Scholar
  54. [54]
    J. T. Yen,Magnetoplasmadynamic channel flow and energy conversion with Hall current, Phys. Fluids, 7, 1964, pp. 723–729.CrossRefMATHGoogle Scholar
  55. [55]
    G. M. Bam-Zelikovich,Effect of Hall currents on the flow of a conducting gas at high flow velocities, J. Appl. Mech. Tech. Phys., 1965, n. 3, pp. 16–21.Google Scholar
  56. [56]
    A. I. Morozov, L. S. Solov'ev,The plane flow of an ideally conducting compressible liquid taking the Hall effect into account, Soviet Phys. Tech. Phys., 9, 1965, n. 7.Google Scholar
  57. [57]
    H. Naruse,The Hall effect on the magnetohydrodynamic flow near a stagnation point, J. Phys. Soc. Japan, 22, 1967, pp. 638–653.Google Scholar
  58. [58]
    J. Y. T. Tang, R. Seebass,The effect of tensor conductivity on continuum magnetogasdynamic flows, Quart. Appl. Math., 26, 1968, pp. 311–320.MATHGoogle Scholar
  59. [59]
    E. V. Locke, J. McCune,Growth rates for axial magneto-acoustic waves in a Hall generator, AIAA J., 4, 1966, pp, 1748–1751.Google Scholar
  60. [60]
    J. Rosciszewski,Acceleration process in the Hall current device, Phys. Fluids, 10, 1967, pp. 1095–1099.CrossRefGoogle Scholar
  61. [61]
    J. B. Burlock, P. Brockman, R. V. Hess, D. R. Brooks,Measurement of velocities and acceleration mechanism for coaxial Hall accelerators, AIAA J., 5, 1967, pp. 558–561.Google Scholar
  62. [62]
    M. Ohji,Response of magneto-fluid dynamic turbulence to an imposed strong magnetic field in the presence of Hall effect, J. Phys. Soc. Japan, 21, 1966, pp. 167–172.CrossRefGoogle Scholar
  63. [63]
    G. Helmis,Investigation on electrodynamics of electrically conducting media in turbulent motion taking account the Hall effect, Monatsber. Deutschen Akad. Wiss. Berlin, 10, 1968, pp. 280–291.MATHGoogle Scholar
  64. [64]
    G. A. Liubimov,On the solution of certain problems in magnetohydrodynamics with anisotropic conductivity, P.M.M., 26, 1962, pp. 789–805.Google Scholar
  65. [65]
    E. M. Drobyshevskii,Effect of Hall current on the rotation of a plasma in crossed fields, Soviet Physics-Tech. Phys., 8, 1964, pp. 997–1000.Google Scholar
  66. [66]
    H. Hasimoto,Swirl of a conducting gas due to the Hall effect, J. Phys. Soc. Japan, 19, 1964, pp. 1457–1463.CrossRefGoogle Scholar
  67. [67]
    L. A. Panchenko,Influence of the Hall effect on hypersonic flow past a wedge, J. Appl. Mech. Tech. Phys., 1965, n. 1, pp. 17–21.Google Scholar
  68. [68]
    A. C. Kolb, P. C. Thonemann, E. Hintz,Transverse fields, Hall currents, and electron drift velocities in a θ-pinch, Phys. Fluids, 8, 1965, pp. 1005–1006.CrossRefGoogle Scholar
  69. [69]
    Pau-Chang Lu,Rayleigh's problem in magnetogasdynamics with Hall effect, AIAA J., 3, 1965, pp. 2219–2224.CrossRefGoogle Scholar
  70. [70]
    I. Kim,The Hall effect in an electrically conducting fluid for variable magnetic field and high magnetic Reynolds numbers, J. Appl. Mech. Tech. Phys., 1965, n. 3, pp. 22–24.Google Scholar
  71. [71]
    C. L. Chen,Hall effect in a collision-dominated gaseous plasma, J. Appl. Phys., 37, 1966, pp. 2205–2210.CrossRefGoogle Scholar
  72. [72]
    E. A. Witalis,Hall effect influence on a highly conducting fluid, Plasma Physics, 9, 1967, pp. 415–421.CrossRefGoogle Scholar
  73. [73]
    R. W. Porter, A. B. Cambel,Hall effect in flight magnetogasdynamics, AIAA J., 5, 1967, pp. 2208–2213.Google Scholar
  74. [74]
    E. G. Broadbent,Magnetohydrodynamic wave propagation from a localized source including Hall effect, Phil. Trans. Roy. Soc. London, Ser. A 263, 1968, pp. 119–147.MATHGoogle Scholar
  75. [75]
    E. A. Witalis,MHD flow distortion caused by strong Hall effect, Plasma Physics, 10, 1968, pp. 109–116.CrossRefGoogle Scholar
  76. [76]
    L. E. Kalikhman,Elements of magnetogasdynamics, Saunders, Philadelphia, 1967.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1970

Authors and Affiliations

  • Giulio Mattei
    • 1
  1. 1.Pisa

Personalised recommendations