Advertisement

Annali di Matematica Pura ed Applicata

, Volume 81, Issue 1, pp 45–59 | Cite as

Deduzione variazionale delle equazioni gravitazionali spinoriali

  • Elisa Udeschini Brinis
Article

Sunto

Si deducono da un principio variazionale le equazioni gravitazionali per gli spazi vuoti, in forma spinoriale, valendosi dell’azione gravitazionale einsteiniana e assumendo come variabili base le componenti dello spin-tensore fondamentale. Per particolari variazioni, si ottengono le identità contratte del Bianchi, in forma spinoriale.

Summary

In this paper, gravitational field equations for empty-space, in spinor form, are derived from a variational principle by making use of the einsteinian gravitational Action and by assuming as basic variables describing the field the components of the fundamental spin-tensor. With an appropriate variation, the contracted Bianchi identities, in spinor form, are deduced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    H. Weyl,Elektron und Gravitation, I. Zeits. Phys., 56, 330, 1929.CrossRefMATHGoogle Scholar
  2. [2]
    L. Infeld andB. L. van der Waerden,Die Wellengleichung des Elektrons in der allgemeinen Relativitätstheorie, Sitz. Ber. der Preuss Akad., 9, 380, 1933.Google Scholar
  3. [3]
    W. L. Bade andH. Jehle,An introduction to Spinors, Revs. Modern Phys, 25, 714, 1953.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    P. G. Bergmann,Two-Component Spinors in General Relativity, Phys. Rev. 107, 2, 1956.Google Scholar
  5. [5]
    L. Witten,Invariants of General Relativity and the Classification of Spaces, Phys. Rev., 113, 357, 1959.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    R. Penrose,A Spinor Approach to General Relativity, Annals of Physics, 10, 171, 1960.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    C. G. Oliveira andC. Marcio do Amaral,Spinor Formalism in Gravitation, Il Nuovo Cimento, XLVII, 9, 1967.Google Scholar
  8. [8]
    H. S. Ruse,On the Geometry of Dirac’s Equations and their Expression in Tensor Form, Proc. Roy. Soc. Edinburgh, 57, 97, 1937.MATHGoogle Scholar
  9. [9]
    E. M. Corson,Introduction to Tensors, Spinors and Relativistic Wave-Equations, Blackie & Son Ltd., London and Glasgow, 1955.Google Scholar
  10. [10]
    E. Udeschini Brinis,Equazioni di campi spinoriali dedotte da un’unica lagrangiana, Nota I, Rendic. Acc. Naz. Lincei, VIII, XL, 4, 1966.Google Scholar
  11. [11]
    R. Penrose,General Relativity in Spinor Form, in:Les théories relativistes de la gravitation, C.N.R.S., Paris, 1962.Google Scholar
  12. [12]
    A. Einstein,Die Grundlage der allgemeinen Relativitätstheorie, Annalen der Physik, 49, 769, 1916.MATHGoogle Scholar
  13. [13]
    A. Palatini,Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rend. Circ. Mat. Palermo, 43, 203, 1919.MATHCrossRefGoogle Scholar
  14. [14]
    P. G. Bergmann,The General Theory of Relativity, in Handbuch der Physik, Band IV, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962.Google Scholar
  15. [15]
    E. Nöther,Invariante Variationsprobleme, Nachr. Ges. Wiss. Göttingen, 235, 1918.Google Scholar
  16. [16]
    A. Trautman,Conservation Laws in General Relativity, in:Gravitation. An introduction to current research, edited by L. Witten, J. Wiley & Sons, New-York-London, 1962.Google Scholar
  17. [17]
    H. Weyl,Space-Time-Matter, Dover publications, 1922.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1969

Authors and Affiliations

  • Elisa Udeschini Brinis
    • 1
  1. 1.Milano

Personalised recommendations