Advertisement

Annali di Matematica Pura ed Applicata

, Volume 112, Issue 1, pp 107–118 | Cite as

An application of compactifications: Some theorems on maximal ideals

  • Pao-sheng Hsu
Article

Keywords

Maximal Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    G. Bachman -E. Beckenstein -L. Narici -S. Warner,Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc.,204 (1975), pp. 91–112.CrossRefMathSciNetMATHGoogle Scholar
  2. [2]
    N. Bourbaki,General Topology, 2 vols., Reading, Massachusetts, Addison-Wesley Publishing Co. (1966).Google Scholar
  3. [3]
    E. Correl -M. Henriksen,On rings of bounded continuous functions with values in a division ring, Proc. Am. Math. Soc.,7 (1956), pp. 194–198.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    J. Dugundji,Topology, Boston, Allyn and Bacon, Inc. (1966).MATHGoogle Scholar
  5. [5]
    W. W. Fairchild -C. I. Tulcea,Topology, Philadelphia, W. B. Saunders Co. (1971).MATHGoogle Scholar
  6. [6]
    J. K. Goldhaber -E. S. Wolk,Maximal ideals in rings of bounded continuous functions, Duke Math. J.,29 (1954), pp. 565–569.CrossRefMathSciNetGoogle Scholar
  7. [7]
    J. G. Hocking -G. S. Young,Topology, Reading, Massachusetts, Addison-Wesley Publishing Co. (1961).MATHGoogle Scholar
  8. [8]
    I. Kaplansky,Topological rings, Am. J. Math.,69 (1947), pp. 153–183.MATHMathSciNetGoogle Scholar
  9. [9]
    I. Kaplansky,Topological methods in valuation theory, Duke Math. J.,14 (1947), pp. 527–541.CrossRefMathSciNetGoogle Scholar
  10. [10]
    I. Kaplansky,Topological rings, Bull. Am. Math. Soc.,54 (1948), pp. 809–826.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. L. Kelley,General Topology, Princeton, D. Van Nostrand Co. Inc. (1955).MATHGoogle Scholar
  12. [12]
    L. Narici -E. Beckenstein -G. Bachman,Functional Analysis and Valuation Theory, New York, Marcel Dekker, Inc. (1971).MATHGoogle Scholar
  13. [13]
    R. Staum,The algebra of bounded continuous functions into a non-archimedean field, Pacific Journal, to appear.Google Scholar
  14. [14]
    W. J. Thron,Topological Structures, New York, Holt, Rinehart and Winston (1966).MATHGoogle Scholar
  15. [15]
    S. Warner,Ulam’s measure problem, Notes from lectures given at Reed College, Oregon (1970–71).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1977

Authors and Affiliations

  • Pao-sheng Hsu
    • 1
  1. 1.MillbrookUSA

Personalised recommendations