Annali di Matematica Pura ed Applicata

, Volume 119, Issue 1, pp 379–390 | Cite as

Existence et determination du premier point de bifurcation pour des couples d'opérateurs potentiels non différentiables à l'origine

  • Hugo Beirão da Viega
Article
  • 14 Downloads

Summary

Let Λ and Γ denote respectively the gradients of two Gateaux differentiable real functionals ϕ and ϕ on a real reflexive Banach space V. We shall prove that, under very general assumptions, the first bifurcation point (at the origin in V) for the non-linear equation Γ(u)=λΛ(u) is the first eigenvalue of the linear equation B(u)=λA(u) where Λ=A+ν and Γ=B+ω. The perators Λ and Γ are not necessarily differentiable at the origin. Roughly speaking it sufficies to assume that the projections in a suitable direction of the remainders ν(u) and ω(u) go to zero faster than ∥u∥; this direction depends on u ans is, in the simplest examples, actually the u-direction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Beirão da Veiga,On bifurcation and asymptotic bifurcation for nondifferentiable potential operators and for systems of Hammerstein type, Studies in Analysis, Advances in Mathematics supplementary studies, Vol. 4 (1979), Academic Press Inc.Google Scholar
  2. [2]
    H. Beirão da Veiga, Bifurcation dans des espaces de Banach pour un couple d'opérateurs non différentiables à l'origine, C. R. Acad. Sc. Paris,283 (1976), pp. 329–331.MATHGoogle Scholar
  3. [3]
    H. Beirão da Veiga,Esistenza e calcolo del primo punto di biforcazione asintotica per una coppia di operatori potenziali non differenziabili all'infinito, à paraître Boll. Unione Mat. Italiana.Google Scholar
  4. [4]
    M. A. Krasnosel'skii,Topological methods in the theory of nonlinear integral equations (English edition), Pergamon Press Ltd., 1963.Google Scholar
  5. [5]
    J. Naumann,On bifurcation buckling of thin elastic shells, Journal de Mécanique,13 (1974), pp. 715–741.MathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematika Pura ed Applicata 1979

Authors and Affiliations

  • Hugo Beirão da Viega
    • 1
  1. 1.Trento

Personalised recommendations