Advertisement

Annali di Matematica Pura ed Applicata

, Volume 119, Issue 1, pp 273–280 | Cite as

The cohomology groups of a special Einstein manifold

  • Grigorios Tsagas
Article

Summary

We consider a compact orientable Einstein manifold of even dimension n=2m, which is k-pinched. If k>[m(m−1) 2 (2m−1) 2 (2m−1)+3], then there exists no element, different from zero of the H 2 (M,R) such that its exterior m-power belongs to a zero class. This result has some applications to the topological product of manifold.

Keywords

Cohomology Group Einstein Manifold Topological Product Zero Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    M. Berger,Sur les variétes (4/23)-pincées de dimension 5, C. R. Acad. Sci. Paris,257 (1963), pp. 4122–4125.MATHMathSciNetGoogle Scholar
  2. [2]
    S. Goldberg,Curvature and Homology, Academic Press, New York, 1962.Google Scholar
  3. [3]
    M. Greenberg,Lectures on Algebraic Topology, W. A. Benjamin Inc., 1967.Google Scholar
  4. [4]
    A. Lichnerowicz,Théorie globale des connexions et des groupes d'holonomie, Dunod, Paris, 1955.Google Scholar
  5. [5]
    A. Lichnerowicz,Geometrie des groupes de transformations, Dunod, Paris, 1958.Google Scholar
  6. [6]
    U. Simon,Curvature bounds for the spectrum of closed Einstein spaces, to appear.Google Scholar
  7. [7]
    G. Tsagas,On the cohomology ring of a positively pinched Riemannian manifold of dimension 4, Mathematische Annalen,185 (1970), pp. 75–80.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    G. Tsagas,On the cohomology ring of a pinched Riemannian manifold of even dimension, Proceedings of the « Tagung über differentialgeometrie im Grossen » (1969), pp. 307–317.Google Scholar
  9. [9]
    G. Tsagas,On the second cohomology group of a pinched Riemannian manifold, Ann. Mat. Pura ed Applicata,84 (1970), pp. 209–311.Google Scholar

Copyright information

© Fondazione Annali di Matematika Pura ed Applicata 1979

Authors and Affiliations

  • Grigorios Tsagas
    • 1
  1. 1.ThessalonikiGreece

Personalised recommendations