Summary
We prove: Let S be a closed n-dimensional surface in an(n+1)-space of constant curvature (n ≥ 2); k1 ≥ ... ≥ kn denote its principle curvatures. Let φ(ξ1, ..., ξn) be such that\({}_{\partial \xi _i }^{\partial \varphi } > 0\). Then if φ(k1, ..., kn)=const on S and S is subject to some additional general conditions (those(II 0) or(II) no 1), S is a sphere.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Literature
A. D. Alexandrov,Uniquess theorems for the surfaces in the large V. Vestnik Leningrad Univ. 1958.
-- --, The same VI. Ibidem, 1959.
-- --, The same II. Ibidem, 1957, N. 7.
A. D. Alexandrov,Investigations on maximum priuciple I, Izvestia Vysshih Uchebnyh zavedeniy, Math., 1958, N. 5.
-- --, The same V. Ibidem, 1960, N. 5.
H. Hopf,Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachrichten, v. 4, 1951.
H. Hopf und K. Voss,Ein Satz aus der Flächenthorie im Grossen, « Arch. d. Math. », v. 3, 1943.
C. Miranda,Equazioni alle derivate parziali di tipo ellittico, 1955, Chpt. 1.
K. Voss, Einige differentialgeometrische Kongruenzsätze für geschlossene Flächen und Hyperflächen, « Math. Annalen », v. 131, pp. 180–218, 1956.
Author information
Authors and Affiliations
Additional information
To Enrico Bompiani on his scientific Jubilee
Rights and permissions
About this article
Cite this article
Alexandrov, A.D. A characteristic property of spheres. Annali di Matematica 58, 303–315 (1962). https://doi.org/10.1007/BF02413056
Issue Date:
DOI: https://doi.org/10.1007/BF02413056