Annali di Matematica Pura ed Applicata

, Volume 58, Issue 1, pp 303–315

A characteristic property of spheres

  • A. D. Alexandrov
Article

Summary

We prove: Let S be a closed n-dimensional surface in an(n+1)-space of constant curvature (n ≥ 2); k1 ≥ ... ≥ kn denote its principle curvatures. Let φ(ξ1, ..., ξn) be such that\({}_{\partial \xi _i }^{\partial \varphi } > 0\). Then if φ(k1, ..., kn)=const on S and S is subject to some additional general conditions (those(II0) or(II) no 1), S is a sphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    A. D. Alexandrov,Uniquess theorems for the surfaces in the large V. Vestnik Leningrad Univ. 1958.Google Scholar
  2. [2]
    -- --, The same VI. Ibidem, 1959.Google Scholar
  3. [3]
    -- --, The same II. Ibidem, 1957, N. 7.Google Scholar
  4. [4]
    A. D. Alexandrov,Investigations on maximum priuciple I, Izvestia Vysshih Uchebnyh zavedeniy, Math., 1958, N. 5.Google Scholar
  5. [5]
    -- --, The same V. Ibidem, 1960, N. 5.Google Scholar
  6. [6]
    H. Hopf,Über Flächen mit einer Relation zwischen den Hauptkrümmungen, Math. Nachrichten, v. 4, 1951.Google Scholar
  7. [7]
    H. Hopf und K. Voss,Ein Satz aus der Flächenthorie im Grossen, « Arch. d. Math. », v. 3, 1943.Google Scholar
  8. [8]
    C. Miranda,Equazioni alle derivate parziali di tipo ellittico, 1955, Chpt. 1.Google Scholar
  9. [9]
    K. Voss, Einige differentialgeometrische Kongruenzsätze für geschlossene Flächen und Hyperflächen, « Math. Annalen », v. 131, pp. 180–218, 1956.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1962

Authors and Affiliations

  • A. D. Alexandrov
    • 1
  1. 1.LeningradU. R. S. S.

Personalised recommendations