Annali di Matematica Pura ed Applicata

, Volume 46, Issue 1, pp 265–311 | Cite as

Teorema del massimo modulo e teorema di esistenza e di unicità per il problema di Dirichlet relativo alle equazioni ellittiche in due variabili

  • Carlo Miranda
Article

Sunto

Come nella prefazione.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    Agmon S.Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane I, « Comm. on pure and applied math. », 10. (1957), 179–240.MATHMathSciNetGoogle Scholar
  2. [2]
    Browder F. E.The Dirichlet problem for linear elliptic equations of arbitrary even order with variables coefficients, « Proc. Nat. Acad. », USA, 38, (1952), 230–235.MATHMathSciNetGoogle Scholar
  3. [3]
    Browder F. E.Assumption of boundary values and the Green's function in the Dirichlet problem for the general elliptic equation, « Proc. Nat. Acad. USA », 39, (1953), 433–439.MATHMathSciNetGoogle Scholar
  4. [4]
    Browder F. E.Strongly elliptic systems of differential equations, Contributions to the theory of partial differential equations. « Annals of Math. Studies », 33, (1954) 15–51.MATHMathSciNetGoogle Scholar
  5. [5]
    Browder F. E.On the regularity properties of solution of ellip'ic differential equations, « Comm. on pure and applied math. », 9, (1956), 351–361.MATHMathSciNetGoogle Scholar
  6. [6]
    Douglis A. andNirenberg L.Interior estimates for elliptic systems of partial differential equations, « Comm. on pure and applied math. », 8, (1955), 503–538.MathSciNetMATHGoogle Scholar
  7. [7]
    Fichera G.Sulla teoria generale dei problemi al contorno per le equazioni differenziali lineari. « Rend. Acc. Naz. Lincei », 21, (1956), 46–55 e 166–172.MATHMathSciNetGoogle Scholar
  8. [8]
    Friedrichs K. O.On the differentiability of the solutions of linear elliptic differential equations, « Comm. on pure and applied math. », 6, (1953), 299–326.MATHMathSciNetGoogle Scholar
  9. [9]
    Gårding L.Dirichlet's problem for linear elliptic partial differential equations « Math Scandinavica », 1, (1953), 237–255.MATHGoogle Scholar
  10. [10]
    Gevrey M.Les quasi functions de Green et les systèmes d'équations aux dérivées partielles da igp elliptique, « Ann. Ec. Norm. Sup. », 52, (1935), 39–108.MATHMathSciNetGoogle Scholar
  11. [11]
    Giraud G.Problèmes de valeurs à la frontière relatifs à certaines données discontinues, « Bull. Soc. Math. de France », 61, (1933), 1–54.MATHMathSciNetGoogle Scholar
  12. [12]
    Giraud G.Nouvelle généralisation des problèmes relatifs aux opérateurs du type elliptique, « Ann. Soc. Polon. de Math. » 14, (1935), 74–115.Google Scholar
  13. [13]
    John F.General properties of solutions of linear elliptic partial differential equations, Proc. of the Symposium on spectral theory and differential equations, Stillwater, Oklahoma, (1955), 113–178.Google Scholar
  14. [14]
    Levi E. E.I problemi dei valori al contorno per le equazioni lineari totalmente ellittiche alle derivate parziali, « Mem. Soc. It. dei XL. », 16, (1909), 1–112.Google Scholar
  15. [15]
    Lions J. L.Problèmes aux limites en théorie des distributions, « Acta Math. » 94, (1955), 13–153.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    Miranda C.Sui sistemi di tipo ellittico di equazioni lineari a derivate parziali del primo ordine, in n variabili indipemdenti, « Mem. Acc. Naz Lincei », 3, (1952) 85–121.MATHMathSciNetGoogle Scholar
  17. [17]
    Equazioni delle derivate parziali di iipo ellittico, « Ergeb. der Math. N. F., Heft 2, (1955).Google Scholar
  18. [18]
    Miranda C.Sul problema misto per le equazioni lineari ellitiche, « Ann. di di Mat. pura e appl. ». 39, (1955), 279–303.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    Morrey C. B. Jr. andNirenberg L.On the analiticity of the solutions of partial differential equations. « Comm. on pure and applied math. » 10, (1957), 271–290.MathSciNetMATHGoogle Scholar
  20. [20]
    Nirenberg L.Remarks on strongly elliptic partial differential equations. « Comm. on pure and applied math. 8, (1955), 647–675.CrossRefGoogle Scholar
  21. [21]
    Pini B.Sulle equazioni a derivate parziali di ordine 2n di tipo ellittico e sui sistemi ellittici di equazioni lineari del secondo ordine sopra una superficie chiusa, « Rend. di Mat. e delle sue appl. », Roma, 11, (1952), 1–20.MathSciNetGoogle Scholar
  22. [22]
    Pini B.Precisazioni a un ragionamento contenuto in una mia nota sulle equazioni a derivate parziali di tipo ellittico, « Ricerche di Mat. », Napoli, 3, (1954), 3–12.MATHMathSciNetGoogle Scholar
  23. [23]
    Prodi G.Sul primo problema al contorno per equazioni a derivate parziali ellittiche o paraboliche con secondo membro illimitato sulla frontiera, « Rend. Ist. Lombardo », 90, (1956), 189–208.MATHMathSciNetGoogle Scholar
  24. [24]
    Visik M. I.Il metodo delle decomposizioni ortogonali e dirette nella teoria delle equazioni differenziali ellittiche, « Mat. Sbornik », 25, (1949), 189–234 (in russo).MathSciNetGoogle Scholar
  25. [25]
    Visik M. I.Sui sistemi fortemente ellittici di equazioni differenziali, « Mat. Sbornik », 29 (1951), 615–675 (in russo).MathSciNetGoogle Scholar
  26. [26]
    Visik M. I.Sui problemi al contorno generali per le equazioni differenziali ellittiche. « Moskovsk Mat. Obsc. », 1, (1952), 187–246 (In russo).MathSciNetGoogle Scholar

Copyright information

© Swets & Zeitlinger B. V. 1958

Authors and Affiliations

  • Carlo Miranda
    • 1
  1. 1.Napoli

Personalised recommendations