On linearity in the special theory of relativity

  • M. Dutta
  • T. K. Mukherjee
  • M. K. Sen
Article

Abstract

In deductions of Lorentz transformations of the special theory of relativity, linearity of transformation is always postulated. There are only a few discussions about this linearity in which it is deduced from some basic physical facts. Here, it is shown to be almost a mathematical consequence of the principle of relativity.

Keywords

Field Theory Elementary Particle Quantum Field Theory Physical Fact Lorentz Transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann, P. G. (1960).Introduction to the theory of Relativity, 1st Indian edn. Asia Publishing House, Bombay.Google Scholar
  2. Bochner, S. and Martin, W. T. (1948).Several Complex Variables. Princeton University Press, Princeton.Google Scholar
  3. Dieudonné, J. (1964).Foundation of Modern Analysis. Academic Press, New York and London.Google Scholar
  4. Dutta, M., and Debnath, L. (1965).Elements of the theory Elliptic and Associated Functions with Applications. World Press, Calcutta.Google Scholar
  5. Einstein, A. (1905). Elektrodynamik bewegter Körper.Annalen der Physik,17, also,The Principle of Relativity (a collection of original memoirs) (1923). Now available in Dover Publications.Google Scholar
  6. Einstein, A. (1955).The Meaning of Relativity, 5th edn, Princeton Universty Press, Princeton.Google Scholar
  7. Fock, V. (1959).The Theory of Space, Time and Gravitation. Pergamon Press, London.Google Scholar
  8. Ford, I. R. (1951).Automorphic Functions. Cambridge University Press.Google Scholar
  9. Fuks, B. A. (1963). Introduction to the Theory of Analytic Functions of Several Complex Variables,American Mathematical Society Translations, Vol. VIII.Google Scholar
  10. Klein, F. (1925).Elementary Mathematics from Advance Stand-point, Vol. 2:Geometry. (Original German: Julius Springer, Berlin), now available in Dover Publications.Google Scholar
  11. Pauli, W. (1921).Relativitäts theorie in Encyklopädie der mathematischen Wissenschaften, Vol. 19. Leipzig. 2nd edn. (1963) (English Translation), B.I.P. Publications, Bombay.Google Scholar
  12. Synge, J. L. (1956).Relativity — The Special Theory. North Holland Publishing Co. Amsterdam.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1971

Authors and Affiliations

  • M. Dutta
    • 1
  • T. K. Mukherjee
    • 2
  • M. K. Sen
    • 3
  1. 1.Centre of Advanced Study in Applied MathematicsCalcutta UniversityIndia
  2. 2.Department of MathematicsJadavpur UniversityJadavpurIndia
  3. 3.Department of Pure MathematicsCalcutta UniversityCalcuttaIndia

Personalised recommendations