Arkiv för Matematik

, Volume 37, Issue 2, pp 291–304 | Cite as

Removable sets for Sobolev spaces

  • Pekka Koskela
Article

Abstract

We study removable sets for the Sobolev spaceW1,p. We show that removability for sets lying in a hyperplane is essentially determined by their thickness measured in terms of a concept ofp-porosity.

Keywords

Sobolev Space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AH]
    Adams, D. R. andHedberg, L. I.,Function Spaces and Potential Theory, Springer-Verlag, Berlin-Heidelberg, 1996.Google Scholar
  2. [AB]
    Ahlfors, L. andBeurling, A., Conformal invariants and function-theoretic null-sets,Acta Math. 83 (1950), 101–129.MathSciNetGoogle Scholar
  3. [AS]
    Aseev, V. V. andSychev, A. V., On sets which are removable for quasiconformal space mappings,Sibirsk. Mat. Zh. 15 (1974), 1213–1227, 1429 (Russian). English transl.:Siberian Math. J. 15 (1974), 851–861.Google Scholar
  4. [B1]
    Bishop, C., Some homeomorphisms of the sphere conformal off a curve,Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 323–338.MATHMathSciNetGoogle Scholar
  5. [B2]
    Bishop, C., No.-removable sets for quasiconformal and locally biLipschitz mappings inR 3, Preprint, 1998.Google Scholar
  6. [GM]
    Gehring, F. W. andMartio, O., Quasiextremal distance domains and extension of quasiconformal mappings,J. Anal. Math. 45 (1985), 181–206.MathSciNetGoogle Scholar
  7. [GV1]
    Gol'dstein, V. M. andVodop'yanov, S. K., A criterion for the removability of sets for the spacesL p1 of quasiconformaland quasi-isometric mappings,Sibirsk. Mat. Zh. 18 (1977), 48–68, 237 (Russian). English transl.:Siberian Math. J. 18 (1977), 35–50.Google Scholar
  8. [GV2]
    Gol'dstein, V. M. andVodop'yanov, S. K., Prolongement des fonctions de classeL p1 et applications quasi conformes,C. R. Acad. Sci. Paris Sér. I Math. 290 (1980), 453–456.MathSciNetGoogle Scholar
  9. [HjK]
    Hajłasz, P. andKoskela, P., Sobolev met Poincaré, to appear inMem. Amer. Math. Soc. Google Scholar
  10. [H]
    Hedberg, L. I., Removable singularities and condenser capacities,Ark. Mat. 12 (1974), 181–201.CrossRefMATHMathSciNetGoogle Scholar
  11. [HK1]
    Heinonen, J. andKoskela, P., Definitions of quasiconformality,Invent. Math. 120 (1995), 61–79.CrossRefMathSciNetGoogle Scholar
  12. [HK2]
    Heinonen, J. andKoskela, P., From local to global in quasiconformal structures,Proc. Nat. Acad. Sci. U.S.A. 93 (1996), 554–556.MathSciNetGoogle Scholar
  13. [HK3]
    Heinonen, J. andKoskela, P., Quasiconformal maps in metric spaces with controlled geometry,Acta Math. 181 (1998), 1–61.MathSciNetGoogle Scholar
  14. [HK4]
    Heinonen, J. andKoskela, P., A note on Lipschitz functions, upper gradients, and the Poincaré inequality,New Zeland J. Math. 28 (1999), 37–42.MathSciNetGoogle Scholar
  15. [HrK1]
    Herron, D. A. andKoskela, P., Uniform and Sobolev extension domains,Proc. Amer. Math. Soc. 114 (1992), 483–489.MathSciNetGoogle Scholar
  16. [HrK2]
    Herron, D. A. andKoskela, P., Continuity of Sobolev functions and Dirichlet finite harmonic measures,Potential Anal. 6 (1997), 347–353.CrossRefMathSciNetGoogle Scholar
  17. [J]
    Jones, P. W., Quasiconformal mappings and extendability of functions in Sobolev spaces,Acta Math. 147 (1981), 71–88.MATHMathSciNetGoogle Scholar
  18. [KW]
    Kaufman, R. andWu, J.-M., On removable sets for quasiconformal mappings,Ark. Mat. 34 (1996), 141–158.MathSciNetGoogle Scholar
  19. [KI]
    Kolsrud, T., Condenser capacities and removable sets inW 1,p,Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 343–348.MATHMathSciNetGoogle Scholar
  20. [K]
    Koskela, P., Extensions and imbeddings,J. Funct. Anal. 159 (1988), 369–383.MathSciNetGoogle Scholar
  21. [KM]
    Koskela, P. andMacManus, P., Quasiconformal mappings and Sobolev spaces,Studia Math. 131 (1998), 1–17.MathSciNetGoogle Scholar
  22. [KMV]
    Koskela, P., Manfredi, J. andVillamor, E., Regularity theory and traces ofA-harmonic functions,Trans. Amer. Math. Soc. 348 (1996), 755–766.CrossRefMathSciNetGoogle Scholar
  23. [KR]
    Koskela, P. andReitich, F., Hölder continuity of Sobolev functions and quasiconformal mappings,Math. Z. 213 (1993), 457–472.MathSciNetGoogle Scholar
  24. [M]
    Maz'ya, V. G.,Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1985.Google Scholar
  25. [R]
    Reshetnyak, Yu. G.,Space Mappings with Bounded Distortion, Transl. Math. Monogr.73, Amer. Math. Soc., Providence, R. I., 1989.Google Scholar
  26. [S]
    Shlyk, V. A., The structure of compact sets generating normal domains, and removable singularities for the spaceL p1 (D),Mat. Sb. 181 (1990), 1558–1572. (Russian). English transl.:Math. USSR Sbornik 71 (1992), 405–418.MATHGoogle Scholar
  27. [V1]
    Väisälä, J., On the null-sets for extremal distances,Ann. Acad. Sci. Fenn. Ser. A I Math. 322 (1962), 1–12.Google Scholar
  28. [V2]
    Väisälä, J., Removable sets for quasiconformal mappings,J. Math. Mech. 19 (1969/70), 49–51.Google Scholar
  29. [W]
    Wu, J.-M., Removability of sets for quasiconformal mappings and Sobolev spaces,Complex Variables Theory Appl. 37 (1998), 491–506.MATHMathSciNetGoogle Scholar
  30. [Y]
    Yamamoto, H., On null sets for extremal distances of orderp, Mem. Fac. Sci. Kôchi Univ. Ser. A Math. 3 (1982), 37–49.MATHGoogle Scholar
  31. [Z]
    Ziemer, W. P.,Weakly Differentiable Functions, Grad. Texts in Math.120, Springer-Verlag, New York, 1989.Google Scholar

Copyright information

© Institut Mittag-Leffler 1999

Authors and Affiliations

  • Pekka Koskela
    • 1
  1. 1.Department of MathematicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations