Annali di Matematica Pura ed Applicata

, Volume 93, Issue 1, pp 263–269 | Cite as

On the asymptotic behavior of the solutions of a nonlinear volterra equation

  • Stig-Olof Londen
Article

Summary

We investigate the behavior as t→ ∞ of the solutions of
$$x'\left( t \right) = - \int\limits_0^t {h\left( {x\left( \tau \right)} \right)d\tau } + \int\limits_0^t {b\left( {t - \tau } \right)g\left( {x\left( \tau \right)} \right)d\tau + f\left( t \right),} $$
The results obtained are compared with earlier results on certain third order differential equations.

Keywords

Differential Equation Asymptotic Behavior Early Result Order Differential Equation Volterra Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. O. C. Ezeilo,A stability result for a certain third order differential equation, Ann. Math. Pura Appl., (IV),72 (1966), pp. 1–10.MATHMathSciNetGoogle Scholar
  2. [2]
    K. B. Hannsgen,On a nonlinear Volterra equation, Michigan Math. J.,16 (1969), pp. 365–376.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    J. J. Levin -D. F. Shea,On the asymptotic behavior of the bounded solutions of some integral equations, J. Math. Anal. Appl.,37 (1972), pp. 42–82, 288–326, 537–575.CrossRefMathSciNetGoogle Scholar
  4. [4]
    S. O. Londen,On the asymptotic behavior of the solution of a nonlinear integrodifferential equation, SIAM J. Math. Anal.,2 (1971), pp. 356–367.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    S. O. Londen,The qualitative behavior of the solutions of a nonlinear Volterra equation, Michigan Math. J.,18 (1971), pp. 321–330.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    S. O. Londen,On the solutions of a nonlinear Volterra equation, J. Math. Anal. Appl., to appear.Google Scholar
  7. [7]
    S. O. Londen,On some nonlinear Volterra integrodifferential equations, J. Differential Equations,11 (1972), pp. 169–179.MATHMathSciNetGoogle Scholar
  8. [8]
    R. Reissig -G. Sansone -R. Conti,Nichtlineare Differentialgleichungen Höherer Ordnung, Edizioni Cremonese, Rome, 1969.Google Scholar
  9. [9]
    K. E. Swick,Asymptotic Behavior of the Solutions of Certain Third Order Differential Equations, SIAM J. Appl. Math.,19 (1970), pp. 96–102.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1972

Authors and Affiliations

  • Stig-Olof Londen
    • 1
  1. 1.OtaniemiFinland

Personalised recommendations