Annali di Matematica Pura ed Applicata

, Volume 87, Issue 1, pp 25–37 | Cite as

A class of fourth order differential equations

  • C. L. Eloff


The multiplicity of zeros of solutions of the differential equation
$$y^{\left( n \right)} \left( x \right) + p\left( x \right)y\left( x \right) = 0$$
are investigated. On account of the results obtained, a class of fourth order differential equations is defined and the properties of the zeros of the solutions, which vanish in x=a, of a subclass, are discussed.


Differential Equation Fourth Order Order Differential Equation Fourth Order Differential Equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. L. Eloff,On the zeros of a fundamental system of solutions of the n-th order linear differential equations. Ann. Mat. Pura Appl. (IV) Vol. LXXVIII (1968) 41–54.MathSciNetGoogle Scholar
  2. [2]
    —— ——,Enkele opmerkings oor die oplossings van'n vyfde-orde-differensiaalvergelyking, Acta Aca l. (UOVS) Series B Nr. 1. (1969) 15–21.Google Scholar
  3. [3]
    M. Greguš,Über die lineare homogene Differentialgleichung dritter Ordnung, Wiss. Z. Univ. Hall Math-Nat. XII/3 (Marz 1963), 265–286.Google Scholar
  4. [4]
    M. Hanan,Oscillation Criteria for third-order linear differential equations, Pacific J. Math. Vol. 11 (1961) 919–944.MATHMathSciNetGoogle Scholar
  5. [5]
    V. A. Kondratev,Oscillation of solutions of linear equations of third and fourth order, Trudy Moskov Mat. Obs. 8 (1959) 259–281.MATHGoogle Scholar
  6. [6]
    —— ——,Oscillatory properties of solutions of the equation y (n) +P(x)y=0, Trudy Moskov. Mat. Obs. Vol. 10 (1961) 419–436.MATHGoogle Scholar
  7. [7]
    W. Leighton, andZ. Nehari,On the oscillation of solutions of selfadjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. Vol. 89 No. 2 (1958) 325–377.CrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Mikusinski,Sur l'equation x (n) +A(t) x=0, Ann. Polon Math. 1 (1955) 207–221.MATHMathSciNetGoogle Scholar
  9. [9]
    G. Sansone,Studi sulle equazioni differenziali lineari omogenee di terzo ordine nel campo reale, Univ. Nac. Tucuman Rev. A 6 (1948) 195–253.MATHMathSciNetGoogle Scholar
  10. [10]
    T. L. Sherman,Properties of solutions of n-th order linear differential equations, Pac. J. Math. 15 (1965) 1045–1060.MATHMathSciNetGoogle Scholar
  11. [11]
    M. Svec,Über einige neue Eigenschaften der (oscillatorischen) Lösungen der linearen Differentialgleichung vierter Ordnung, Czchoslovak Mat. Z. 4 (79) 75–94 (1954).MATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1970

Authors and Affiliations

  • C. L. Eloff
    • 1
  1. 1.South Africa

Personalised recommendations