Annali di Matematica Pura ed Applicata

, Volume 87, Issue 1, pp 25–37 | Cite as

A class of fourth order differential equations

  • C. L. Eloff
Article
  • 26 Downloads

Summary

The multiplicity of zeros of solutions of the differential equation
$$y^{\left( n \right)} \left( x \right) + p\left( x \right)y\left( x \right) = 0$$
are investigated. On account of the results obtained, a class of fourth order differential equations is defined and the properties of the zeros of the solutions, which vanish in x=a, of a subclass, are discussed.

Keywords

Differential Equation Fourth Order Order Differential Equation Fourth Order Differential Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. L. Eloff,On the zeros of a fundamental system of solutions of the n-th order linear differential equations. Ann. Mat. Pura Appl. (IV) Vol. LXXVIII (1968) 41–54.MathSciNetGoogle Scholar
  2. [2]
    —— ——,Enkele opmerkings oor die oplossings van'n vyfde-orde-differensiaalvergelyking, Acta Aca l. (UOVS) Series B Nr. 1. (1969) 15–21.Google Scholar
  3. [3]
    M. Greguš,Über die lineare homogene Differentialgleichung dritter Ordnung, Wiss. Z. Univ. Hall Math-Nat. XII/3 (Marz 1963), 265–286.Google Scholar
  4. [4]
    M. Hanan,Oscillation Criteria for third-order linear differential equations, Pacific J. Math. Vol. 11 (1961) 919–944.MATHMathSciNetGoogle Scholar
  5. [5]
    V. A. Kondratev,Oscillation of solutions of linear equations of third and fourth order, Trudy Moskov Mat. Obs. 8 (1959) 259–281.MATHGoogle Scholar
  6. [6]
    —— ——,Oscillatory properties of solutions of the equation y (n) +P(x)y=0, Trudy Moskov. Mat. Obs. Vol. 10 (1961) 419–436.MATHGoogle Scholar
  7. [7]
    W. Leighton, andZ. Nehari,On the oscillation of solutions of selfadjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. Vol. 89 No. 2 (1958) 325–377.CrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Mikusinski,Sur l'equation x (n) +A(t) x=0, Ann. Polon Math. 1 (1955) 207–221.MATHMathSciNetGoogle Scholar
  9. [9]
    G. Sansone,Studi sulle equazioni differenziali lineari omogenee di terzo ordine nel campo reale, Univ. Nac. Tucuman Rev. A 6 (1948) 195–253.MATHMathSciNetGoogle Scholar
  10. [10]
    T. L. Sherman,Properties of solutions of n-th order linear differential equations, Pac. J. Math. 15 (1965) 1045–1060.MATHMathSciNetGoogle Scholar
  11. [11]
    M. Svec,Über einige neue Eigenschaften der (oscillatorischen) Lösungen der linearen Differentialgleichung vierter Ordnung, Czchoslovak Mat. Z. 4 (79) 75–94 (1954).MATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1970

Authors and Affiliations

  • C. L. Eloff
    • 1
  1. 1.South Africa

Personalised recommendations