Annali di Matematica Pura ed Applicata

, Volume 111, Issue 1, pp 195–211 | Cite as

Discrete and continuous bodies with affine structure

  • G. Capriz
  • P. Podio Guidugli


The equations of motion of an affine body are derived (also for the case of variable mass) evidencing in particular the rôle of the generalized moment of momentum of internal forces. Successively, local dynamic and thermodynamic equations of balance for a continuous body with an affine microstructure are proposed, also for the case when such a body is one of the constituents in a mixture.


Internal Force Variable Mass Local Dynamic Thermodynamic Equation Continuous Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. CaprizP. Podio Guidugli,On the basic laws of reacting mixtures of structured continua, Meccanica,9 (1974), pp. 9–15.CrossRefMathSciNetGoogle Scholar
  2. [2]
    R. D. Mindlin,Microstructure in linear elasticity, Arch. Rational Mech. Anal.,16 (1964), pp. 51–78.CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    R. A. Toupin,Theories of elasticity with couple-stress, Arch. Rational Mech. Anal.,17 (1964), pp. 85–112.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    J. L. EricksenC. Truesdell,Exact theory of stress and strain in rods and shells, Arch. Rational Mech. Anal.,1 (1958), pp. 296–323.MathSciNetGoogle Scholar
  5. [5]
    J. L. Ericksen,Transversely isotropic fluids, Kolloid-Z.,173 (1960), pp. 117–122.CrossRefGoogle Scholar
  6. [6]
    P. M. Naghdi,The theory of shells and plates, in Handbuch der Physik, VIa/2, C. Truesdell Ed., Springer (1972).Google Scholar
  7. [7]
    A. C. Eringen,Mechanics of micromorphic continua, in Proc. IUTAM Symp., Freudenstadt and Stuttgart, 1967, pp. 18–35, E. Kröner Ed., Springer (1968).Google Scholar
  8. [8]
    C. Truesdell — R. A. Toupin,The classical field theories, in Handbuch der Physik, III/1, S. Flügge Ed., Springer (1960).Google Scholar
  9. [9]
    A. E. GreenR. S. Rivlin,Simple force and stress multipoles, Arch. Rational Mech. Anal.,16 (1964), pp. 325–351.MathSciNetGoogle Scholar
  10. [10]
    R. S. Rivlin,Generalized mechanics of continuous media, in Proc. IUTAM Symp. Freudenstadt and Stuttgart, 1967, pp. 1–17, E. Kröner Ed., Springer (1968).Google Scholar
  11. [11]
    R. S. Rivlin,The formulation of theories in generalized continuum mechanics and their physical significance, in Symp. Math. I, INAM, Rome, 1968, pp. 357–373, Oderisi (Gubbio) and Academic Press (1969).Google Scholar
  12. [12]
    C. Truesdell,Rational thermodynamics, McGraw-Hill (1969).Google Scholar
  13. [13]
    W. Noll,Materially uniform simple bodies with inhomogeneities, Arch. Rational Mech. Anal.,27 (1967), pp. 1–32.CrossRefMathSciNetGoogle Scholar
  14. [14]
    W. Noll,Lectures on the foundations of continuum mechanics and thermodynamics, Arch. Rational Mech. Anal.,52 (1973), pp. 62–92.CrossRefMathSciNetMATHGoogle Scholar
  15. [15]
    G. Capriz — P. Podio Guidugli,Formal structure and classification of theories of oriented materials (forthcoming).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1975

Authors and Affiliations

  • G. Capriz
    • 1
  • P. Podio Guidugli
    • 1
  1. 1.Pisa

Personalised recommendations