Advertisement

Annali di Matematica Pura ed Applicata

, Volume 59, Issue 1, pp 285–318 | Cite as

Classes of biorthonormal systems

Second part
  • Jacob Steinberg
Article
  • 21 Downloads

Summary

The (A)-summability and mean-convergence of Fourier series in terms of certain biorthonormal systems have been investigated.

The problem of completing a set of polynomials to a biothonormal system has been solved in the case of certain sets of type zero (Sheffer’s classification).

Keywords

Fourier Series Biorthonormal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    R. Boas andC. Buck,Polynomial expansions of analytic functions, « Ergebnisse der Mathematik», Neue Folge. No. 19, 1958.Google Scholar
  2. [2]
    G. Doetsch,Handbuch der Laplace TRansformation, Band I, Birkhauser, Basel, 1950.Google Scholar
  3. [3]
    E. Goursat,Course d’Analyse, Tome III, Gauthier-Villars, Paris, 1956.Google Scholar
  4. [4]
    R. Paley andN. Wienier,Fourier transforms in the complex domain, « American Mathematical Society Colloquium Publications», Vol. XIX, 1934.Google Scholar
  5. [5]
    G. Pólia andG. Szegö,Aufgaben und Lehrsätze aus der Analysis, Erster Band, Springer, 1954.Google Scholar
  6. [6]
    E. Rainville,Special Functions, Macmillan, New York, 1960.Google Scholar
  7. [7]
    I. Sheffer,Some properties of polynomial sets of type zero, « Duke Mathematical Journal», Vol. 5. No. 3, 1939.Google Scholar
  8. [8]
    -- --,Note on Appell polynomials, « Bull. Am. Math. Soc.», Vol. 51, No. 10, 1945.Google Scholar
  9. [9]
    J. Steinberg,Classes of biorthonormal systems, « Annali di Matematica pura ed applicata», Serie IV, Tomo LII, 1960.Google Scholar
  10. [10]
    -- --,Functions almost all of whose moments vanish, « Bulletin of the Research Council of Israel», Vol. 8 F. No. 2, 1959.Google Scholar
  11. [11]
    -- --,Integral tranforms with two reproducing properties, « Bulletin of the Research Council of Israel», Vol. 8 F, No. 4, 1960.Google Scholar
  12. [12]
    G. Szegö,Orthogonal Polynomials, « Colloquium Publications of the American Mathematical Society», Vol. XXIII, 1959.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1962

Authors and Affiliations

  • Jacob Steinberg
    • 1
  1. 1.HaifaIsrael

Personalised recommendations