Annali di Matematica Pura ed Applicata

, Volume 122, Issue 1, pp 301–313 | Cite as

Surfaces of discontinuity and waves in an anisotropic plasma with generalized polytropic equations of state

  • Giulio Mattei


In this paper, using the theory of the surfaces of discontinuity, we study the non-linear, three-dimensional wave propagation in an anisotropic plasma with generalized polytropic equations of state. A detailed account of the surfaces of weak discontinuity is given, whether they are wavefronts or material surfaces. The specific subjects treated in the paper are indicated by the titles of the Sections.


Wave Propagation Specific Subject Material Surface Detailed Account Weak Discontinuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Abraham-Shrauner,Small amplitude hydromagnetic waves for a plasma with a generalized polytrope law, Plasma Physics,15 (1973), pp. 375–385.CrossRefGoogle Scholar
  2. [2]
    M. Dobróka,Small amplitude hydromagnetic waves in wave-guides, treated by generalized polytropic equations of state, Plasma Physics,17 (1975), pp. 1171–1172.CrossRefGoogle Scholar
  3. [3]
    G. Mattei,Sulla instabilità gravitazionale secondo Jeans di un plasma anisotropo con equazioni di stato politropiche generalizzate, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8)64 (1978), pp. 170–176.MathSciNetGoogle Scholar
  4. [4]
    G. Mattei,Cylindrical waves in an anisotropic plasma with generalized polytropic equations of state, Riv. Mat. Univ. Parma, (4)5 (1979), pp. 77–84.MATHMathSciNetGoogle Scholar
  5. [5]
    G. F. Chew -M. L. Goldberger -F. E. Low,The Boltzmann equation and one-fluid hydromagnetic equations in the absence of particle collisions, Proc. Roy. Soc. London Ser. A,236 (1956), pp. 112–118.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    G. Mattei,Varietà caratteristiche e propagazione ondosa in un plasma magnetizzato privo di urti, Ann. Scuola Norm. Sup. Pisa,21 (1967), pp. 745–761.MATHMathSciNetGoogle Scholar
  7. [7]
    N. A. Krall - A. W. Trivelpiece,Principles of Plasma Physics, McGraw-Hill, 1973.Google Scholar
  8. [8]
    C. Truesdell - R. Toupin,The Classical Field Theories, Handbuch der Physik, III/1 (1960).Google Scholar
  9. [9]
    B. Lehnert,Dynamics of charged particles, North-Holland, 1964.Google Scholar
  10. [10]
    B. Finzi,Caratteristiche dei sistemi differenziali e propagazione ondosa, L'Energia Elettrica,27 (1950), pp. 189–195.Google Scholar
  11. [11]
    R. Nardini,Sui fronti d'onda nella magneto-idrodinamica, Riv. Mat. Univ. Parma,7 (1956), pp. 3–32.MathSciNetGoogle Scholar
  12. [12]
    H. Grad - C. K. Chu,Magnetofluid Dynamics, inResearch Frontiers in Fluid Dynamics, Interscience (1965), pp. 317–325.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1979

Authors and Affiliations

  • Giulio Mattei
    • 1
  1. 1.Meccanica RazionaleFacoltà di Ingegneria dell'UniversitàPisa

Personalised recommendations