Skip to main content
Log in

Phytochrome regulation of greening in wild type and long-hypocotyl mutants ofArabidopsis thaliana

  • Published:
Planta Aims and scope Submit manuscript

Abstract

A brief pulse of red light (R) given to darkgrown seedlings ofArabidopsis thaliana (L.) Heyn. potentiates rapid synthesis of chlorophyll upon transfer to continuous white light. The time course for potentiation of rapid greening shows that a R pulse in the LF (low fluence) range has maximal effect within a few hours, and that there is a small VLF (very low fluence) component as well. Partial reversal of the effect of R by far-red light (FR) indicates that the pulse acts through phytochrome. As it does in the wild-type (WT), a pulse of R accelerates greening of long-hypocotyl (hy) mutants. The extent of induction by the R pulse was about the same in the WT and in allhy mutants studied. Reversibility by FR was greatly decreased in thehy-1 andhy-2 strains. It is possible that these mutants contain a species of phytochrome with defective phototransformation kinetics. If there is such a defective phytochrome species, it nevertheless appears to be active in the potentiation of rapid greening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

R:

red light

FR:

far-red light

DMF:

N,N-dimethylformamide

LF:

low-fluence phytochrome response

VLF:

very-low-fluence response

WT:

wild-type

LHC(II):

light harvesting chlorophyll a/b binding proteins of photosystem II

References

  • Adamse, P., Kendrick, R.E., Koornneef, M. (1988) Yearly review: photomorphogenetic mutants of higher plants. Photochem. Photobiol.48, 833–841

    CAS  Google Scholar 

  • Briggs, W.R., Mösinger, E., Schäfer, E. (1988) Phytochrome regulation of greening in barley—effects on chlorophyll accumulation. Plant Physiol.86, 435–440

    CAS  PubMed  Google Scholar 

  • Chory, J., Peto, C.A., Ashbaugh, M., Saganich, R., Pratt, L.H., Ausubel, F. (1989) Different roles for phytochrome in etiolated and green plants deduced from characterization ofArabidopsis thaliana mutants. Plant Cell1, 867–880

    Article  CAS  PubMed  Google Scholar 

  • Cone, J.W., Kendrick, R.E. (1985) Fluence-response curves and action spectra for promotion and inhibition of seed germination in wildtype and long-hypocotyl mutants ofArabidopsis thaliana L. Planta163, 43–54

    Article  CAS  Google Scholar 

  • Ellis, R.J. (1986) Photoregulation of plant gene expression. Biosci. Rep.6, 127–136

    Article  CAS  PubMed  Google Scholar 

  • Estelle, M.A., Somerville, C.R. (1986) The mutants ofArabidopsis. Trends Genet.2, 89–93

    Article  Google Scholar 

  • Fluhr, R., Kuhlemeier, C., Nagy, F., Chua, N.H. (1986) Organspecific and light-induced expression of plant genes. Science232, 1106–1112

    CAS  PubMed  Google Scholar 

  • Giuliano, G., Pichersky, E., Malik, V.S., Timko, M.P., Scolnik, P.A., Cashmore, A.R. (1988) An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. USA85, 7089–7093

    CAS  PubMed  Google Scholar 

  • harpster, M., Apel, K. (1985) The light-dependent regulation of gene expression during plastid development in higher plants. Physiol. Plant.64, 147–152

    Article  CAS  Google Scholar 

  • Horwitz, B.A., Thompson, W.F., Briggs, W.R. (1988) Phytochrome regulation of greening inPisum: chlorophyll accumulation and abundance of mRNA for the light-harvesting chlorophyll a/b binding proteins. Plant Physiol.86, 299–305

    CAS  PubMed  Google Scholar 

  • Karlin-Neumann, G.A., Sun, L., Tobin, E.M. (1988) Expression of light-harvesting chlorophyll a/b-protein genes in phytochrome-regulated in etiolatedArabidopsis thaliana seedlings. Plant Physiol.88, 1323–1331

    CAS  PubMed  Google Scholar 

  • Kasemir, H., Oberdorfer, U., Mohr, H. (1973) A twofold action of phytochrome in controlling chlorophyll a accumulation. Photochem. Photobiol.18, 481–486

    CAS  PubMed  Google Scholar 

  • Kaufman, L.S., Thompson, W.F., Briggs, W.R. (1984) Different red light requirements for phytochrome-induced accumulation of cab RNA and rbcS RNA. Science226, 1447–1449

    CAS  PubMed  Google Scholar 

  • Ken-Dror, S., Horwitz, B.A. (1990) Altered phytochrome regulation of greening in anaurea mutant of tomato. Plant Physiol. (in press)

  • Koornneef, M., Rolff, E., Spruit, C.J.P. (1980) Genetic control of light-inhibited hypocotyl elongation inArabidopsis thaliana (L.) Heynh. Z. Pflanzenphysiol.100, 147–160

    Google Scholar 

  • Koornneef, M., Cone, J.W., Dekens, R.G., O'Herne-Robers, E.G., Spruit, C.J.P., Kendrick, R.E. (1985) Photomorphogenic responses of long hypocotyl mutants of tomato. J. Plant Physiol.120, 153–165

    CAS  Google Scholar 

  • Lam, E., Green, P.J., Wong, M., Chua, N-H. (1989) Phytochrome activation of two nuclear genes requires cytoplasmic protein synthesis. EMBO J.8, 2777–2783

    CAS  PubMed  Google Scholar 

  • Mohr, H. (1972) Lectures on photomorphogenesis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Moran, R. (1982) Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol.69, 1376–1381

    CAS  PubMed  Google Scholar 

  • Mösinger, E., Batschauer, A., Apel, K., Schäfer, E., Briggs, W.R. (1988) Phytochrome regulation of greening in barley. Effects on mRNA abundance and on transcriptional activity of isolated nuclei. Plant Physiol.86, 706–710

    Article  PubMed  Google Scholar 

  • Nagy, F., Kay, S.A., Chua, N.H. (1988) Gene regulation by phytochrome. Trends Genet.4, 37–42

    Article  CAS  PubMed  Google Scholar 

  • Oelmüller, R., Kendrick, R.E., Briggs, W.R. (1989) Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the labile phytochrome-deficientaurea mutant of tomato. Plant Mol. Biol.13, 223–232

    Article  PubMed  Google Scholar 

  • Parks, B.M., Jones, A.M., Adamse, P., Koornneef, M., Kendrick, R.E., Quail, P.H. (1987) Theaurea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome. Plant Mol. Biol.9, 97–107

    Article  CAS  Google Scholar 

  • Parks, B.M., Shanklin, J., Koornneef, M., Kendrick, R.E., Quail, P.H. (1989) Immunochemically detectable phytochrome is present at normal levels but is photochemically nonfunctional in thehy 1 andhy 2 long hypocotyl mutants ofArabidopsis. Plant Mol. Biol.12, 425–437

    Article  CAS  Google Scholar 

  • Raven, C.W., Shropshire, W., Jr. (1975) Photoregulation of logarithmic fluence-response curves for phytochrome control of chlorophyll formation inPisum sativum L. Photochem. Photobiol.21, 423–429

    CAS  Google Scholar 

  • Sharrock, R.A., Parks, B.M., Koornneef, M., Quail, P.H. (1988) Molecular analysis of the phytochrome deficiency in anaurea mutant of tomato. Mol. Gen. Genet.213, 9–14

    Article  CAS  Google Scholar 

  • Virgin, H.I. (1972) Chlorophyll biosynthesis and phytochrome action. In: Phytochrome, pp. 371–404, Mitrakos, K., Shropshire, W., Jr., eds. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Hans Mohr on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lifschitz, S., Gepstein, S. & Horwitz, B.A. Phytochrome regulation of greening in wild type and long-hypocotyl mutants ofArabidopsis thaliana . Planta 181, 234–238 (1990). https://doi.org/10.1007/BF02411544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02411544

Key words

Navigation