Skip to main content
Log in

In-vivo and in-vitro synthesis of photosynthetic fructose-1,6-bisphosphatase from pea (Pisum sativum L.)

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Etiolated pea (Pisum sativum L. cv. Lincoln) seedlings do not show any capability for the biosynthesis of chloroplast fructose-1,6-bisphosphatase (FBPase), but the rate of biosynthesis of the increases with the pre-illumination time. This light-induced FBPase synthesis appears to be regulated at the transcriptional level, the response of young leaves being greater than that of mature ones. In-vivo labelling experiments demonstrated by immunoprecipitation, followed by sodium dodecyl sulfate electrophoresis and fluorography, the presence of a 49-kilodalton (kDa) band which corresponds to the mature FBPase subunit. In-vitro translation experiments with a wheat-germ synthesizing system and polyadenylated mRNA isolated from illuminated young pea seedlings have demonstrated the appearance of a 59-kDa labelled band corresponding to the precursor of the FBPase basic subunit. When intact pea chloroplasts were added to the above in-vitro incubation mixture, a labelled 49-kDa subunit similar to that of the in-vivo experiments appeared in the organelle under illumination. From these results we can conclude that a 10-kDa transit peptide bound to the translated pea FBPase subunit exists in the cytosol; this transit peptide is lost during passage through the chloroplast envelope, leaving the mature subunit inside the organelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ELISA:

enzyme-linked immunosorbent assay

FBPase:

fructose-1,6-bisphosphatase

kDa:

kilodalton

MW:

molecular weight

PBS:

phosphate-buffered saline

PMSF:

phenylmethylsulfonyl fluoride

poly(A)mRNA:

polyadenylated mRNA

SDS:

sodium dodecyl sulfate

References

  • Anderson, L.E. (1986) Light/dark modulation of enzyme activity in plants. Adv. Bot. Res.12, 1–45

    Article  CAS  Google Scholar 

  • Anderson, C.W., Straus, J.W., Dudock, B.S. (1983) Preparation of cell-free protein-synthesizing system from wheat germ. Methods Enzymol.101, 635–644

    CAS  PubMed  Google Scholar 

  • Apel, K., Kloppstech, K. (1978) The plastid membranes of barley (Hordeum vulgare). Light-induced appearance of mRNA encoding for the apoprotein of the light-harvesting chlorophyll a/b protein. Eur. J. Biochem.85, 581–588

    Article  CAS  PubMed  Google Scholar 

  • Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenol-oxidase inBeta vulgaris. Plant Physiol.24, 1–15

    CAS  PubMed  Google Scholar 

  • Bard, J., Bourque, D.P., Hildebrand, M., Zaitlin, D. (1985) In vitro expression of chloroplast genes in lysates of higher plant chloroplasts. Proc. Natl. Acad. Sci. USA82, 3983–3987

    CAS  PubMed  Google Scholar 

  • Bassham, J.A., Krause, G.H. (1969) Free energy changes and metabolism regulation in steady-state photosynthetic carbon reduction. Biochim. Biophys. Acta189, 207–221

    Article  CAS  PubMed  Google Scholar 

  • Berry, J.O., Nikolau, B.J., Carr, J.P., Klessig, D.F. (1985) Transcriptional and post-transcriptional regulation of ribulose-1,5-bisphosphate carboxylase gene expression in light- and dark-grown amaranth cotyledons. Mol. Cell Biol.5, 2238–2246

    CAS  PubMed  Google Scholar 

  • Berry-Lowe, S.L., McKnight, T.D., Shah, D.M., Meagher, R.B. (1982) The nucleotide sequence, expression, and evolution of one member of a multigene family encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean. J. Mol. Appl. Genet.1, 483–498

    CAS  PubMed  Google Scholar 

  • Bloom, M.V., Milos, P., Roy, H. (1983) Light-dependent assembly of ribulose-1,5-bisphosphate carboxylase. Proc. Natl. Acad. Sci. USA80, 1013–1017

    CAS  PubMed  Google Scholar 

  • Briat, J.F., Lescure, A.M., Mache, R. (1986) Transcription of the chloroplast DNA: A review. Biochimie68, 981–990

    Article  CAS  PubMed  Google Scholar 

  • Broglie, R., Coruzzi, G., Lamppa, G., Keith, B., Chua, N.H. (1983) Structural analysis of nuclear genes coding for the precursor protein to the small subunit of wheat ribulose-1,5-bisphosphate carboxylase. Bio/Technology1, 55–61

    Article  Google Scholar 

  • Buchanan, B.B. (1980) Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol.31, 341–374

    Article  CAS  Google Scholar 

  • Buchanan, B.B., Schürmann, P., Kalberer, P.P. (1971) Ferredoxin-activated fructose diphosphatase of spinach chloroplasts. J. Biol. Chem.246, 5952–5959

    CAS  PubMed  Google Scholar 

  • Chueca, A., Lázaro, J.J., López Gorgé, J. (1984) Light-induced nuclear synthesis of spinach chloroplast fructose-1,6-bisphosphatase. Plant Physiol.75, 539–541

    CAS  PubMed  Google Scholar 

  • Coruzzi, G., Broglie, R., Edwards, C., Chua, N.H. (1984) Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. EMBO J.3, 1671–1679

    CAS  PubMed  Google Scholar 

  • Cuming, A.C., Bennett, J. (1981) Biosynthesis of the light-harvesting chlorophyll a/b protein. Control of messenger RNA activity by light. Eur. J. Biochem.118, 71–80

    Article  CAS  PubMed  Google Scholar 

  • Ellis, R.J. (1981) Chloroplast proteins: Synthesis, transport and assembly. Annu. Rev. Plant Physiol.32, 111–137

    Article  CAS  Google Scholar 

  • Freyssinet, G., Buetow, D.E. (1984) Regulation and expression of genes for chloroplast proteins. Isr. J. Bot.33, 107–131

    CAS  Google Scholar 

  • Fromm, H., Devic, M., Fluhr, R., Edelman, M. (1985) Control of psbA gene expression: in matureSpirodela chloroplasts light regulation of 32-kd protein synthesis is independent of transcript level. EMBO J.4, 291–295

    CAS  PubMed  Google Scholar 

  • Gallagher, T.F., Ellis, R.J. (1982) Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei. EMBO J.1, 1493–1498

    CAS  PubMed  Google Scholar 

  • Grossman, A.S., Bartlett, S.G., Schmidt, G.W., Mullet, J. E., Chua, N.H. (1982) Optimal conditions for post-translational uptake of proteins by isolated chloroplasts. J. Biol. Chem.257, 1558–1563

    CAS  PubMed  Google Scholar 

  • Hermoso, R., Chueca, A., Lázaro, J.J., López Gorgé, J. (1987) An immunological method for quantitative determination of photosynthetic fructose-1,6-bisphosphatase in leaf crude extracts. Photosynth. Res.14, 269–278

    Article  CAS  Google Scholar 

  • Herzog, B., Stitt, M., Heldt, H.W. (1984) Control of photosynthetic sucrose synthesis by fructose-2,6-bisphosphate. 3. Properties of the cytosolic fructose-1,6-bisphosphatase. Plant Physiol.75, 561–565

    CAS  PubMed  Google Scholar 

  • Hurn, B.A.L., Chantler, S.M. (1980) Production of reagent antibodies. Methods Enzymol.70, 105–142

    Google Scholar 

  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685

    Article  CAS  PubMed  Google Scholar 

  • Lázaro, J.J., Chueca, A., López Gorgé, J., Mayor, F. (1974) Fructose-1,6-diphosphatase from spinach leaf chloroplasts: Purification and heterogeneity. Phytochemistry13, 2455–2461

    Article  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275

    CAS  PubMed  Google Scholar 

  • Maniatis, T., Frisch, E.F., Sambrook, J. (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Marcus, F., Fickenscher, K. (1988) Amino-terminal sequence of spinach chloroplast fructose-1,6-bisphosphatase. Arch. Biol. Med. Exp.21, 117–121

    CAS  PubMed  Google Scholar 

  • Marcus, F., Harrsch, P.B., Moberly, L., Edelstein, F., Latshaw, S.P. (1987) Spinach chloroplast fructose-1,6-bisphosphatase. Identification of the subtilisin-sensitive region and of conserved histidines. Biochemistry26, 7029–7035

    Article  CAS  PubMed  Google Scholar 

  • Mills, W.R., Joy, K.W. (1980) A rapid method for isolation of purified, physiologically active chloroplasts, used to study the intracellular distribution of amino acids in pea leaves. Planta148, 75–83

    Article  CAS  Google Scholar 

  • Palmer, J.D. (1985) Comparative organization of chloroplast genomes. Annu. Rev. Genet.19, 325–354

    Article  CAS  PubMed  Google Scholar 

  • Pfisterer, J., Lachmann, P., Kloppstech, K. (1982) Transport of proteins into chloroplasts. Binding of nuclear-coded chloroplast proteins to the chloroplast envelope. Eur. J. Biochem.126, 143–148

    Article  CAS  PubMed  Google Scholar 

  • Plá, A., López Gorgé, J. (1981) Thioredoxin/fructose-1,6-bisphosphatase affinity in the enzyme activation by the ferredoxin-thioredoxin system. Biochim. Biophys. Acta636, 113–118

    Article  PubMed  Google Scholar 

  • Portis, A.R. Jr., Heldt, H.W. (1976) Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim. Biophys. Acta449, 434–446

    Article  CAS  PubMed  Google Scholar 

  • Preiss, J., Kosuge, T. (1970) Regulation of enzyme activity in photosynthetic systems. Annu. Rev. Plant Physiol.21, 433–466

    Article  CAS  Google Scholar 

  • Raines, C.A., Lloyd, J.C., Longstaf, M., Bradley, D., Dyer, T. (1988) Chloroplast fructose-1,6-bisphosphatase. The product of a mosaic gene. Nucleic Acids Res.16, 7931–7942

    CAS  PubMed  Google Scholar 

  • Sahrawy, M., Chueca, A., Hermoso, R., Lázaro, J.J., López Gorgé, J. (1988) Effect of light quality and intensity on the biosynthesis of photosynthetic fructose-1,6-bisphosphatase from pea (Pisum sativum L.) seedlings. Life Sci. Adv.7, 55–59

    Google Scholar 

  • Schmidt, G.W., Devilliers-Thiery, A., Desruisseaux, H., Blobel, G., Chua, N.H. (1979) NH2-terminal amino acid sequences of precursor and mature forms of the ribulose-1,5-bisphosphate carboxylase small subunits fromChlamydomonas reinhardii. J. Cell Biol.83, 615–622

    Article  CAS  PubMed  Google Scholar 

  • Vidal, J., Gadal, P. (1981) Evidence for the novo synthesis of nicotinamide-adenine-dinucleotide phosphate malate dehydrogenase during greening of corn leaves. Physiol. Vég.19, 483–489

    CAS  Google Scholar 

  • Wallace, D.M. (1987) Large- and small-scale phenol extractions. Methods Enzymol.152, 33–41

    Article  CAS  PubMed  Google Scholar 

  • Wasmann, C.C., Reiss, B., Bartlett, S.G., Bohnert, H.J. (1986) The importance of the transit peptide and the transported protein for protein import into chloroplasts. Mol. Gen. Gent.205, 446–453

    Article  CAS  Google Scholar 

  • Zhu, Y.S., Kung, S.D., Bogorad, L. (1985) Phytochrome control of levels of mRNA complementary to plastid and nuclear genes of maize. Plant Physiol.79, 371–376

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, G., Kelly, G.J., Latzko, E. (1978) Purification and properties of spinach leaf cytoplasmic fructose-1,6-bisphosphatase. J. Biol. Chem.253, 5952–5956

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahrawy, M., Chueca, A., Hermoso, R. et al. In-vivo and in-vitro synthesis of photosynthetic fructose-1,6-bisphosphatase from pea (Pisum sativum L.). Planta 182, 319–324 (1990). https://doi.org/10.1007/BF02411381

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02411381

Key words

Navigation