Skip to main content
Log in

Actions of Tori on Orbifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. F. Bonahon: private letter (July, 1987).

  2. F. Bonahon, L. Siebenmann: The classification of Seifert fibred 3-orbifolds, Low Dimensional Topology, R. Fenn, Editor, (1982), London Math. Soc. Lecture Notes Series 95, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  3. G. Bredon: Introduction to compact transformation groups, Academic Press, New York, 1972.

    MATH  Google Scholar 

  4. R. Fintushel: Circle actions on simply connected 4-manifolds,Trans. Amer. Math. Soc. 230 (1977), 147–171.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Fintushel: Classification of circle actions on 4-manifolds,Trans. Amer. Math. Soc. 242 (1978), 377–390.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Haefliger: Groupoides d'holonomie et classifiants,Astérisque 116 (1984), 70–97.

    MATH  MathSciNet  Google Scholar 

  7. A. Haefliger, Quach Ngoc Du: Une présentation du groupe d'une orbifold,Astérisque 116 (1984), 98–107.

    Google Scholar 

  8. A. Haefliger: Leaf closures in Riemannian foliations, A Fête of Topology, Papers Dedicated to I. Tamura, Academic Press (1988), 3–32.

  9. A. Haefliger and E. Salem: Riemannian foliations on simply connected manifolds and actions of tori on orbifolds,Illinois J. Math., to appear.

  10. B. Malgrange: Division des distributions,Séminaire L. Schwartz (1959/60), Exposés 21–25.

  11. P. Orlik andF. Raymond: Actions of the torus on 4-manifolds, I,Trans. Amer. Math. Soc. 152 (1970), 531–559, andII,Topology 13 (1974), 89–112.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Salem: Thesis, University of Geneva (1987).

  13. I. Satake: The Gauss-Bonnet Theorem forV-manifolds,J. Math. Soc. Japan 9 (1957), 464–492.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Schwartz: Lifting smooth homotopies of orbit spaces,IHES, Publications mathématiques,51 (1980), 37–136.

    Google Scholar 

  15. W. Thurston: The Geometry and Topology of 3-manifolds, Mimeographed notes, Princeton University, Chapter 13.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haefliger, A., Salem, E. Actions of Tori on Orbifolds. Ann Glob Anal Geom 9, 37–59 (1991). https://doi.org/10.1007/BF02411354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02411354

Keywords

Navigation