Experimental Mechanics

, Volume 42, Issue 1, pp 123–128 | Cite as

In-situ tensile testing of nano-scale specimens in SEM and TEM

  • M. A. Haque
  • M. T. A. Saif
Article

Abstract

We present a new experimental method for the mechanical characterization of freestanding thin films with thickness on the order of nanometers to micrometers. The method allows, for the first time, in-situ SEM and TEM observation of materials response under uniaxial tension, with measurements of both stresses and strains under a wide variety of environmental conditions such as temperature and humidity. The materials that can be tested include metals, dielectrics, and multi-layer composites that can be deposited/grown on a silicon substrate. The method involves lithography and bulk micromachining techniques to pattern the specimen of desired geometry, release the specimen from the substrate, and co-fabricate a force sensor with the specimen. Co-fabrication provides perfect alignment and gripping. The tensile testing fits an existing TEM straining stage, and a SEM stage. We demonstrate the proposed methodology by fabricating a 200 nm thick, 23.5 μm wide, and 185 μm long freestanding sputter deposited aluminum specimen. The testing was done in-situ inside an environmental SEM chamber. The stress-strain diagram of the specimen shows a linear elastic regime up to the yield stress σy MPa, with an elastic modulusE=74.6 GPa.

Key Words

Mechanical properties MEMS fabrication tensile testing thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Madou, M., Fundamentals of Microfabrication, CRC Press (1997).Google Scholar
  2. 2.
    Brotzen, F.R., “Mechanical Testing of Thin Films,”International Materials Reviews,39 (1),24–45 (1994).Google Scholar
  3. 3.
    Nix, W.D., “Mechanical Properties of Thin Films,”Metallurgical Transactions,20A,2217 (1989).Google Scholar
  4. 4.
    Kang, Y.S. andHo, P.S., “Thickness Dependent Mechanical Behavior of Submicron Aluminum Films,”J. Electronic Materials,26 (7),805–813 (1997).Google Scholar
  5. 5.
    Hoffman, R.W., “Nanomechanics of Thin Films: Emphasis: Tensile Properties,”Materials Research Society Symposium Proceedings,130,295–305 (1989).Google Scholar
  6. 6.
    Huang, H. andSpaepen, F., “Tensile Testing of Free-Standing Cu, Ag and Al Thin Films and Ag/Cu Multilayers,”Acta Materialia,48 (12),3261–3269 (2000).CrossRefGoogle Scholar
  7. 7.
    Read, D.T., “Piezo-Actuated Microtensile Test Apparatus,”J. Testing and Evaluation,26 (3),255–259 (1998).Google Scholar
  8. 8.
    Yuan, B. andSharpe, W.N., “Mechanical Testing of Polysilicon Thin Films,”Experimental Mechanics,37 (1),32–35 (1997).Google Scholar
  9. 9.
    Greek, S., Ericson, F., Johansson, S., andSchweitz, J.A., “Micromechanical Tensile Testing,”Materials Research Society Symposium Proceedings,436,227–232 (1997).Google Scholar
  10. 10.
    Haque, M.A. and Saif, M.T.A., “Microscale Materials Testing Using MEMS Actuators,” to be published in Journal of Microelectromechanical Systems,10 (1) (2001).Google Scholar
  11. 11.
    Behr, R., Mayer, J., andArzt, E., “TEM Investigation of the Superdislocations and their Interaction with Particles in Dispersion Strengthened Intermetallics, Intermetallics,7,423–436 (1999).CrossRefGoogle Scholar
  12. 12.
    Robertson, I.M., Lee, T.C., andBrinbaum, H.K., “Application of In-Situ TEM Deformation Technique to Observe how ‘Clean’ and Doped Grain Boundaries Respond to Local Stress Concentrations,”Ultramicroscopy,40,330–338 (1992).CrossRefGoogle Scholar
  13. 13.
    Robert Bosch Gmbh, patents 4855017 and 4784720 (USA) and 4241045C1 (Germany).Google Scholar
  14. 14.
    Spaepen, F. andShull, A., “Mechanical Properties of Thin Films & Multilayers,”Current Opinion in Solid State and Materials Science,1,679–683 (1996).CrossRefGoogle Scholar
  15. 15.
    Sanders, P. G., Eastman, J. A., andWeertman, J. R., “Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium,”Acta Materialia,45 (10),4019–4025 (1997).CrossRefGoogle Scholar
  16. 16.
    Chechenin, N. G., Botigger, J., andKrog, J. P., “Nanoindentation of Amorphous Aluminum Oxide Films III. The Influence of the Substrate on the Elastic Properties,”Thin Solid Films,304,70–77 (1997).Google Scholar
  17. 17.
    Vinci, R.P., Cornella, G., and Bravman, J.C., Anetastic Effects in Freestanding Al Thin Films, Proc. 5th International Workshop on Stress Induced Phenomena in Metallization, Stuttgart, Germany, 240–248 (1999).Google Scholar
  18. 18.
    Lee, H., Cornella, G., andBravman, J. C., “Stress Relaxation of Free-standing Aluminum Beams for Microelectromechanical Systems Applications,”Applied Physics Letters,76 (23),3415–3417 (2000).CrossRefGoogle Scholar
  19. 19.
    Gibeling, J. C. andNix, W. D., “Observations of Anelastic Backflow Following Stress Reductions During Creep of Pure Metals, Acta Materialia,29,1769–1784, (1981).Google Scholar
  20. 20.
    Tang, W. C., Nguyen, C. H., andHowe, R.T., “Laterally Driven Polysilicon Resonant Microstructures,”Sensors and Actuators A,20,25–32 (1989).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2002

Authors and Affiliations

  • M. A. Haque
    • 1
  • M. T. A. Saif
    • 1
  1. 1.Department of Mechanical & Industrial EngineeringUniversity of Illinois at Urbana-ChampaignUrbana-ChampaignUSA

Personalised recommendations