Advertisement

Experimental Mechanics

, Volume 42, Issue 2, pp 178–181 | Cite as

Degradation of nylon-6/clay nanocomposites in NO x

  • J. S. Shelley
  • K. L. DeVries
Article

Abstract

Nylon-6 is an important engineering polymer that, in its fully spherulitic (bulk) form, has many applications in gears, rollers, and other long life cycle components. In 1993, Toyota commercialized a nylon-6/clay nanocomposite out of which it produced the timing belt cover for the Camry. Although these hybrid nanocomposites show significant improvements in their mechanical response characteristics, including yield strength and heat distortion temperature, little is known about the degradation of these properties due to environmental pollutants like NO x . Nylon-6 fibers are severely degraded by interaction with NO x and other pollutants, showing a strong synergy between applied load and environmental degradation. While the nanocomposites show a significant reduction in permeability of gases and water due to the incorporation of lamellar clay, their susceptibility to nondiffusional mechano-chemical degradation is unknown. The fracture toughness of these nylon-6/clay nanocomposites increases, not as a function of clay content, but as a function of the volume of nylon-6 polymer chains influenced by the clay lamellae surfaces. Both the clay and the constrained volume offer the nanocomposites some protection from the deleterious effects of NO x . The time-to-failure at a given stress intensity factor as a function of clay content and constrained volume is discussed along with fracture toughness of the materials.

Key Words

Nylon mechanical properties strength impact strength environmental degradation time dependence fracture toughness NOx constrained volume Nylon-6/clay hybrid nanocomposites delaminated hybrids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hauser, E. H., US Patent 2,951,087 (1960).Google Scholar
  2. 2.
    Friedlander, H.Z., Polymer Preprints,4 (2,300 (1963).Google Scholar
  3. 3.
    Kamgaito, O, Fukushima, Y., Doi, H., US patent 4,472,538 (1984).Google Scholar
  4. 4.
    Vaia, R., andGiannelis, E., Macromolecules,30,7990,8000 (1997).Google Scholar
  5. 5.
    Vaia, R., Jandt, K., Kramer, E., andGiannelis, E., Macromolecules,28,8080 (1995).CrossRefGoogle Scholar
  6. 6.
    Krishnamoorti, R., Vaia, R., andGiannelis, E., Chem. Mater.,8,1728,2628 (1996).CrossRefGoogle Scholar
  7. 7.
    Giannelis, E., Adv. Mater.,8,29 (1996).CrossRefGoogle Scholar
  8. 8.
    Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., andKamigato, O., J. Polymer Sci. A,31,983 (1993).Google Scholar
  9. 9.
    Shelley, J.S., Mather, P.T., andDeVries, K.L., Polymer,42,5849 (2001).CrossRefGoogle Scholar
  10. 10.
    Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., andKamigaito, O., J. Mater. Res.,8,1185 (1993).Google Scholar
  11. 11.
    Okada, A., Usuki, A., Kurauchi, T. andKamigato, O., Chap. 6: Polymer-Clay Hybrids in Hybrid Organic-Inorganic Composites, Amer. Chem. Soc, Washington, D.C., 55 (1995).Google Scholar
  12. 12.
    Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Kurauchi, T., andKamigato, O., J. Materials Research,8,1185 (1993).Google Scholar
  13. 13.
    Shelley, J.S., Ph.D. Dissertation, University of Utah (May 2000).Google Scholar
  14. 14.
    Perry, M.C., Vail, M.A., andDeVries, K.L., Polymer Eng. and Sci.,35,41 (1995);and Perry, M.C., Dissertation, University of Utah (1997).Google Scholar
  15. 15.
    McCarthy, R.D., Steurer, H.U., and Daily, M.C., National Bureau of Standards, The Thermodynamic Properties of Nitrogen Tetroxide, NBSIR 86-3054, 55 (1986).Google Scholar
  16. 16.
    Jellinek, H.H.G., “Chapter 9: Reaction of Polymers with Pollutant Gases,” in Aspects of Degradation and Stabilization of Polymers, H.H.G. Jellinek, ed, Elseveir, 431 (1978).Google Scholar
  17. 17.
    DeVries, K.L. and Perry M.C., Chemodegradation in Polymer Materials Encyclopedia, CRC press, 1187–1195 (1996).Google Scholar
  18. 18.
    Morrison R.T. andBoyd, R.N., Organic Chemistry, 5th Ed, Allyn and Bacon, Boston, 871 (1987).Google Scholar
  19. 19.
    Smith, L.V. andDeVries, K.L., Polymer,34,546 (1993);and Smith, L.V., Thesis, University of Utah (1991).Google Scholar
  20. 20.
    Williams, J.G., Fracture Mechanics of Polymers, John Wiley & Sons, New York (1984).Google Scholar
  21. 21.
    Usuki, A. Koiwai, A., Kojima, Y., Kawasumi, M., Okada, A., Kurauchi, T., andKamigaito, J., J. Appl. Polymer Sci.,55,119 (1995).Google Scholar
  22. 22.
    Oka, S. and Chikahisa, Y., Kobunshi Bussei, and Asakura Syoten, Tokyo (1974).Google Scholar
  23. 23.
    Anderson, T.L., Fracture Mechanics: Fundamentals and Applications, CRC Press, Boca Raton (1991).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2002

Authors and Affiliations

  • J. S. Shelley
    • 1
  • K. L. DeVries
    • 2
  1. 1.Air Force Research LaboratoryPropulsion Directorate AFRL/PRSE, Edwards AFB
  2. 2.Department of Mechanical EngineeringUniversity of UtahSalt Lake City

Personalised recommendations