Skip to main content
Log in

The effect of sabot mass on the striker bar for split Hopkinson pressure bar experiments

  • Technical note
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kolsky, H., “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading,”Proc. Royal Soc. Lond., B,62,676–700 (1949).

    Google Scholar 

  2. Kolsky, H., Stress Waves in Solids, Dover, New York (1963).

    Google Scholar 

  3. Nicholas, T., “Material Behavior at High Strain Rates,”Impact Dynamics, Chapter 8, John Wiley & Sons, New York (1982).

    Google Scholar 

  4. Follansbee, P.S., “The Hopkinson Bar,”In Mechanical Testing, Metals Handbook, 9th ed.,8,American Society for Metals,Metals Park, Ohio,198–217 (1985).

    Google Scholar 

  5. Nemat-Nasser, S., Isaacs, J.B., andStarrett, J.E., “Hopkinson Techniques for Dynamic Recovery Experiments,”Proc. R. Soc. Lond., A,435,371–391 (1991).

    Google Scholar 

  6. Ramesh, K.T. andNarashimhan, S., “Finite Deformations and the Dynamic Measurement of Radial Strains in Compression Kolsky Bar Experiments,”Int. J. Solids Structures,33,3723–3738 (1996).

    Article  Google Scholar 

  7. Gray, G.T., “Classic Split-Hopkinson Pressure Bar Technique,”ASM Handbook,8,Mechanical Testing and Evaluation ASM International,Materials Park, OH, 44073-0002 (2000).

    Google Scholar 

  8. Gray, G.T. andBlumenthal, W.R., “Split-Hopkinson Pressure Testing of Soft Materials,”ASM Handbook,8,Mechanical Testing and Evaluation,ASM International,Materials Park, OH 44073-0002 (2000).

    Google Scholar 

  9. Frew, D.J., Forrestal, M.J., andChen, W., “A Split Hopkinson Pressure Bar Technique to Determine Compressive Stress-strain Data for Rock Materials,” EXPERIMENTAL MECHANICS,41,40–46 (2001).

    Article  Google Scholar 

  10. Frew, D.J., Forrestal, M.J., andChen, W., “Pulse Shaping Techniques for Testing Brittle Materials with a Split Hopkinson Pressure Bar,” EXPERIMENTAL MECHANICS,42,93–106 (2002).

    Article  Google Scholar 

  11. Gray, G.T., Blumenthal, W.R., Trujillo, C.P., andCarpenter, R.W., “Influence of Temperature and Strain Rate on the Mechanical Behavior of Adiprene L-100,”J. Phys. IV France Colloq. C3 (DYMAT 97),7,523–528 (1997).

    Google Scholar 

  12. Chen, W., Zhang, B., andForrestal, M.J., “A Split Hopkinson Bar Technique for Low-impedance Materials,” EXPERIMENTAL MECHANICS,39,81–85 (1999).

    Article  Google Scholar 

  13. Graff, K.F., “Wave Motions in Elastic Solids, Dover, New York (1975).

    Google Scholar 

  14. Skalak, R., “Longitudinal Impact of a Semi-Infinite Circular Elastic Bar,”Trans. ASME, J. Appl. Mech.,34,59–64 (1957).

    MathSciNet  Google Scholar 

  15. Togami, T.C., Baker, W.E., andForrestal, M.J., “A Split Hopkinson Bar Technique to Evaluate the Performance of Accelerometers,”Trans. ASME, J. Appl. Mech.,63,353–356 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrestal, M.J., Frew, D.J. & Chen, W. The effect of sabot mass on the striker bar for split Hopkinson pressure bar experiments. Experimental Mechanics 42, 129–131 (2002). https://doi.org/10.1007/BF02410873

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02410873

Keywords

Navigation