Annali di Matematica Pura ed Applicata

, Volume 95, Issue 1, pp 293–301

# Further stability and boundedness results for the solutions of some differential equations of the fourth order

• B. S. Lalli
• W. A. Skrapek
Article

## Summary

In this paper sufficient conditions (Theorem 1 and Corollary 1) for the asymptotic stability (in the large) of the trivial solutions x=0 of the differential equations
$$D_1 \left( x \right) = x^{\left( 4 \right)} + f_1 \left( {\ddot x} \right)\dddot x + f_2 \left( {\dot x,\ddot x} \right) + g\left( {x,\dot x} \right) + h\left( {x,\dot x} \right) = 0,$$
and
$$D_2 \left( x \right) = x^{\left( 4 \right)} + F_1 \left( {\ddot x} \right)\dddot x + F_2 \left( {\dot x,\ddot x} \right)\ddot x + G\left( {x,\dot x} \right)\dot x + H\left( {x,\dot x} \right)x = 0,$$
are given. These differential equations are more general than those considered by Harrow ([1], [2]), the authors ([5], [6]), Ezeilo [4], Tejumola [7], Reissig [8], Sinha and Hoff [9], and Cartwrifht [11]. The results reduce to those given by Harrow [1] for the equation
$$x^{\left( 4 \right)} + a_1 \dddot x + a_2 \ddot x + g\left( {\dot x} \right) + h\left( x \right) = 0.$$
A result (Theorem 2) on the boundedness of the solutions of the differential equations D1(x)==p1(t) and D2(x)=p2(t) is also established.

## Keywords

Differential Equation Fourth Order Asymptotic Stability Trivial Solution Boundedness Result
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [1]
M. Harrow,A stability result for solutionl of certain fourth order homogeneous differential equations, J. London Math. Soc.,42 (1967), pp. 51–56.
2. [2]
M. Harrow,Further results on the boundedness and the stability of solutions of some differential equationl of the fourth order, Siam J. Math. Anal.,1, no. 2 (1970), pp. 189–194.
3. [3]
R. Reissig -G. Sansone -R. Conti,Nichtlineare Differentialgleichungen Höherer Ordnung, Chapter VI (1969, pp. 503–624.Google Scholar
4. [4]
J. O. C. Ezeilo,stability result for solutions of certain fourth order differential equations, J. of Math. Anal. and Appl.,5 (1962), pp. 136–146.
5. [5]
B. S. Lalli - W. A. Skrapek,On the boundedness and the stability of some differential equations of the fourth order, Siam J. Math., to appear.Google Scholar
6. [6]
B. S. Lalli -W. A. Skrapek,Some further stability and boundenness results for some differential equations of the fourth order, Ann. di Mat. pura e appl.,90 (1971), pp. 167–180.
7. [7]
H. O. Tejumola,Boundedness and periodicity of solutions of certain fourth order differential equations, Ann. di Mat. pura e appl.,80 (1968), pp. 177–196.
8. [8]
R. Reissig,Über die Beschränktheit der Lösungen einer nichtlinearen Differentialgleichung vierter Ordnung, Monatsberichte Der Deutschen Akademie Der Wissenschoften Zu Berlin,9 (1967), pp. 649–652.
9. [9]
A. S. C. Sinha -R. G. Hoff,Stability of a nonautonomous differential equation of fourth order, Siam J. Control,9, no. 1 (1971), pp. 8–14.
10. [10]
L. Cesari,Asymptotic Behaviour and Stability Problems in Ordinary Differential Equations, Springer-Verlag, Berlin, 1959.Google Scholar
11. [11]
M. L. Cartwright,On the stability of solutions of certain differential equations of the fourth order, Quart. J. of Mech. and App. Math.,9 (1956), pp. 185–195.