Experimental Mechanics

, Volume 43, Issue 3, pp 248–255 | Cite as

A review of MEMS-based microscale and nanoscale tensile and bending testing

  • M. A. Haque
  • M. T. A. Saif
Article

Abstract

Thin films at the micrometer and submicrometer scales exhibit mechanical properties that are different than those of bulk polycrystals. Industrial application of these materials requires accurate mechanical characterization. Also, a fundamental understanding of the deformation processes at smaller length scales is required to exploit the size and interface effects to develop new and technologically attractive materials. Specimen fabrication, small-scale force and displacement generation, and high resolution in the measurements are generic challenges in microscale and nanoscale mechanical testing. In this paper, we review small-scale materials testing techniques with special focus on the application of microelectromechanical systems (MEMS). Small size and high force and displacement resolution make MEMS suitable for small-scale mechanical testing. We discuss the development of tensile and bending testing techniques using MEMS, along with the experimental results on nanoscale aluminum specimens.

Key Words

Mems tensile tesing bending testing thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neugebauer, C.A., “Tensile Properties of Thin, Evaporated Gold Films,”J. Appl. Phys.,31,1096–1101 (1960).CrossRefGoogle Scholar
  2. 2.
    Gutkin, M.Y., Ovid'ko, I.A., andPande, C.S., “Theoretical Models of Plastic Deformation Processes in Nano-Crystalline Materials,”Rev. Adv. Mater. Sci.,2,80–102 (2001).Google Scholar
  3. 3.
    Flinn, P.A., Gardner, D.S., andNix, W.D., “Measurement and Interpretation of Stress in Aluminum-Based Metallization as a Function of Thermal History,”IEEE Trans. Electron Devices, (3),689–699 (1987).Google Scholar
  4. 4.
    Ting, T., Factors Limiting the Accuracy of Mechanical Property Measurement by Nanoindentation, PhD Thesis, Mechanical Engineering and Materials Science, Rice University (1997).Google Scholar
  5. 5.
    Espinosa, H.D., Prorok, B.C., andFischer, M., “A Methodology for Determining Mechanical Properties of Freestanding Thin Films and MEMS Materials,”Journal of the Mechanics and Physics of Solids,51,47–67 (2002).Google Scholar
  6. 6.
    Tsuchiya, T., Tabata, O., Sakata, J., andTaga, Y., “Specimen Size Effect on Tensile Strength of Surface Micro-Machined Polycrystalline Silicon Thin Films,”J. Microelectromech. Syst.,7 (1),106–113 (1998).CrossRefGoogle Scholar
  7. 7.
    Ogata, T. andArai, M., “Continuous SEM Observations of Creep-Fatigue Damage Processes,”Fatigue and Fracture of Engineering Materials and Structure,21,873–884 (1998).Google Scholar
  8. 8.
    Chasiotis, I. andKnauss, W. G., “A New Microtensile Tester for the Study of MEMS Materials with the Aid of Atomic Force Microscopy,” EXPERIMENTAL MECHANICS,42 (1),51–57 (2002).CrossRefGoogle Scholar
  9. 9.
    Behr, R., Mayer, J., andArzt, E., “TEM Investigation of the Superdislocations and Their Interaction with Particles in Dispersion Strengthened Intermetallics,”Intermetallics,7,423–436 (1999).CrossRefGoogle Scholar
  10. 10.
    Robertson, I.M., Lee, T.C., and Birnbaum, H.K., “Application of In Situ TEM Deformation Technique to Observe How ‘Clean’ and Doped Grain Boundaries Respond to Local Stress Concentrations,” Ultramicroscopy,40,330–338.Google Scholar
  11. 11.
    Youngdahl, C.J., Hugo, R.C., Kung, H., andWeertman, J.R., “TEM Observation of Nano-Crystalline Copper During Deformation,”Materials Research Society Symposium Proceedings,634,B.1.2.1-B.1.2.6 (2001).Google Scholar
  12. 12.
    Li, J., Zeng, Y., Wang, Y., andChu, W., In SituStudies of Deformation and Fracture in Sputtering Copper Film,”J. Univ. Sci. Technol. Beijing,7 (1),38–41 (2000).Google Scholar
  13. 13.
    Connally, J.A. andBrown, S.B., “Micromechanical Fatigue Testing.” EXPERIMENTAL MECHANICS,33,81–90 (1993).CrossRefGoogle Scholar
  14. 14.
    Osterberg, P.M. andSenturia, S.D., “M-TEST: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures,”J. Microelectromech. Syst.,6 (2),107–118 (1997).CrossRefGoogle Scholar
  15. 15.
    Ballarini, R., Mullen, R.L., Yin, Y., Kahn, H., Stemmer, S., andHeuer, A.H., “The Fracture Toughness of Polycrystalline Silicon Microdevices: A First Report,”J. Mater. Res.,12 (4),915–922 (1997).Google Scholar
  16. 16.
    de Boer, M.P., Jensen, B.D., andBitsie, F., “A Small Area In Situ MEMS Test Structure to Measure Fracture Strength by Electrostatic Probing,”Proc. SPIE,3875,97–103 (1999).Google Scholar
  17. 17.
    Kazinczi, R., Mollinger, J.R., andBossche, A., “Versatile Tool for Characterising Long-Term Stability and Reliability of Micromechanical Structures,”Proc. SPIE,3875,174–183 (1999).Google Scholar
  18. 18.
    Van Arsdell, W. andBrown, S.B., “Subcritical Crack Growth in Silicon MEMS,”J. Microelectromech. Syst.,8 (3),319–327 (1999).Google Scholar
  19. 19.
    Muhlstein, C.L., Brown, S.B., andRitchie, R.O., “High-Cycle Fatigue of Single Crystal Silicon Thin Films,”J. Microelectromech. Syst.,10 (4),593–600 (2001).CrossRefGoogle Scholar
  20. 20.
    Muhlstein, C.L., Brown, S.B., andRitchie, R.O., “High-Cycle Fatigue and Durability of Polycrystalline Silicon Thin Films in Ambient Air,”Sensors and Actuators A,94 (3),177–188 (2001).CrossRefGoogle Scholar
  21. 21.
    Sharpe, W.N. Jr., Jackson, K.M., Hemker, K.J., andXie, Z., “Effect of Specimen Size on Young's Modulus and Fracture Strength of Polysilicon,”J. Microelectromech. Syst.,10 (3),317–326 (2001).CrossRefGoogle Scholar
  22. 22.
    LaVan, D.A. andBuchheit, T.E., “Testing of Critical Features of Polysilicon MEMS,”Proc. SPIE,3880,40–44 (1999).Google Scholar
  23. 23.
    Greek, S. andEricson, F., “In SituTensile Strength Measurement and Weibull Analysis of Thick-Film and Thin Film Micromachined Polysilicon Structures,”Mater. Res. Soc. Symp. Proc.,518,51–56 (1998).Google Scholar
  24. 24.
    Lee, H.-J., Cornella, G., andBravman, J.C., “Stress Relaxation of Free-Standing Aluminum Beams for Microelectromechanical Systems Applications,”Appl. Phys. Lett.,76 (23),3415–3417 (2000).CrossRefGoogle Scholar
  25. 25.
    Read, D.T., Cheng, Y.-W., Keller, R.R., andMcColskey, D.J., “Tensile Properties of Free-Standing Aluminum Thin Films,”Scripta Mater.,45 (5),583–589 (2001).Google Scholar
  26. 26.
    Hoffman, R.W., “Nanomechanics of Thin Films: Emphasis: Tensile Properties,”Mater. Res. Soc. Symp. Proc.,130,295–305 (1989).Google Scholar
  27. 27.
    Ruud, J.A., Josell, D., andSpaepen, F., “A New Method for Tensile Testing of Thin Films,”J. Mater. Res.,8 (1),112–117 (1993).Google Scholar
  28. 28.
    Saif, M.T.A. andMacDonald, N.C., “Micro-Instruments for Submicron Material Studies,”J. Mater. Res.,13 (12),3353–3356 (1998).Google Scholar
  29. 29.
    Haque, M.A. andSaif, M.T.A., “Microscale Materials Testing Using MEMS Actuators,”J. Microelectromech. Syst.,10 (1),146–162 (2001).CrossRefGoogle Scholar
  30. 30.
    Saif, M.T.A. andMacDonald, N.C., “Measurement of Forces and Spring Constants of Micro-Instruments,”Rev. Sci. Instrum.,69 (3),1410–1422 (1998).CrossRefGoogle Scholar
  31. 31.
    Haque, M.A. and Saif, M.T.A., Investigation of Micro-Scale Materials Behavior with MEMS,” Proc. IMECE, Nashville, TN (1999).Google Scholar
  32. 32.
    Haque, M.A. andSaif, M.T.A., “In SituTensile Testing of Nano-Scale Specimens in SEM and TEM,” EXPERIMENTAL MECHANICS,42 (1),123–128 (2001).Google Scholar
  33. 33.
    Haque, M.A. andSaif, M.T.A., “Application of MEMS Force Sensors for In SituMechanical Characterization of Nano-Scale Thin Films in SEM and TEM,”Sensors and Actuators A,97–98,239–245 (2002).Google Scholar
  34. 34.
    Burton, B., “Diffusional Creep of Polycrystalline Materials, 3rd edition, Trans Tech Publications, Germany, 83–84 (1976).Google Scholar
  35. 35.
    Weihs, T.P., Hong, S., Bravman, J.V., andNix, W.D., “Mechanical Deflection of Cantilever Microbeams: A New Technique for Testing the Mechanical Properties of Thin Films,”J. Mater. Res.,3 (5),931–942 (1988).Google Scholar
  36. 36.
    Mencik, J. andQuandt, E., “Determination of Elastic Modulus of Thin Films and Small Specimens Using Beam Bending Methods,”J. Mater. Res.,14 (5),2152–2161 (1999).Google Scholar

Copyright information

© Society for Experimental Mechanics 2003

Authors and Affiliations

  • M. A. Haque
    • 1
  • M. T. A. Saif
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaM.A.

Personalised recommendations