Skip to main content
Log in

Real-time analysis of isochromatics and isoclinics using the phase-shifting method

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper studies a new real-time phase-shifting method for the analysis of isochromatic and isoclinic parameters in photoelasticity. By rotating an analyzer at a constant rate and an output quarter-wave plate at a double rate of the analyzer and recording images by a CCD camera continuously, sequential images which brightness is integrated by sensors in a CCD camera during phase-shifting are obtained. Then, the distributions of the isochromatic and isoclinic parameters are obtained immediately and quantitatively using the proposed phase-shifting algorithm. The proposed method can be applied to high-speed inspection of optical elements or glass products. Also, it is expected that slowly varying time-dependent problems can be analyzed by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hecker, F.W. andMorche, B., “Computer-aided Measurement of Relative Retardations in Plane Photoelasticity,”Experimental Stress Analysis, H. Wieringa, ed., Martinus Nijhoff, Dordrecht, 535–542 (1986).

    Google Scholar 

  2. Kihara, T., “Automatic Whole-field Measurement of Photoelasticity Using Linear Polarized Incident Light,” Proceedings of the 9th International Conference on Experimental Mechanics, Copenhagen, 821–827 (1990).

  3. Patterson, E.A. andWang, Z.F., “Towards Full-field Automated Photoelastic Analysis of Complex Components,”Strain,27(2),49–56 (1991).

    Google Scholar 

  4. Asundi, A., “Phase Shifting in Photoelasticity,”Exp. Tech.,17(I),19–23 (1993).

    Google Scholar 

  5. Otani, Y., Shimada, T., Yoshizawa, T., andUmeda, N., “Two-dimensional Birefringence Measurement Using the Phase Shifting Technique,”Opt. Eng.,33(5),1604–1609 (1994).

    Google Scholar 

  6. Buckberry, C. andTowers, D., “New Approaches to the Full-field Analysis of Photoelastic Stress Patterns,”Opt. Lasers Eng.,24(5),415–428 (1996).

    Article  Google Scholar 

  7. Ramesh, K. andGanapathy, V., “Phase-shifting Methodologies in Photoelastic Analysis—The Application of Jones Calculus,”J. Strain Anal. Eng. Des.,31(6),423–432 (1996).

    Google Scholar 

  8. Asundi, A., Tong, L., andBoay, C.G., “Phase-shifting with a Normal Polariscope,”Appl. Opt.,38(28),5931–5935 (1999).

    Google Scholar 

  9. Ajovalasit, A., Barone, S., andPetrucci, G., “A Method for Reducing the Influence of Quarter-wave Plate Errors in Phase Stepping Photoelasticity,”J. Strain Anal. Eng. Des.,33(3),207–216 (1998).

    Google Scholar 

  10. Ramesh, K. andMangal, S. K., “Data Acquisition Techniques in Digital Photoelasticity: A Review,”Opt. Lasers Eng.,30(1),53–75 (1998).

    Article  Google Scholar 

  11. Ajovalasit, A., Barone, S., andPetrucci, G., “A Review of Automated Methods for the Collection and Analysis of Photoelastic Data,”J. Strain Anal. Eng. Des.,33(2),75–91 (1998).

    Google Scholar 

  12. Chen, T.Y., “Digital Photoelasticity,”Photomechanics, P.K. Rastogi, ed., Springer-Verlag, Berlin, 197–232 (1999).

    Google Scholar 

  13. Ramesh, K., Digital Photoelasticity, Springer-Verlag, Berlin (2000).

    Google Scholar 

  14. Yoneyama, S., Shimizu, M., Gotoh, J., andTakashi, M., “Photoelastic Analysis with a Single Tricolor Image,”Opt. Lasers Eng.,29(6),423–435 (1998).

    Article  Google Scholar 

  15. Yoneyama, S., Gotoh, J., andTakashi, M., “Tricolor Photoviscoelastic Technique and Its Application to Moving Contact,” EXPERIMENTAL MECHANICS,38(3),211–217 (1998).

    Article  Google Scholar 

  16. Yoneyama, S. andTakashi, M., “A New Method for Photoelastic Fringe Analysis from a Single Image Using Elliptically Polarized White Light,”Opt. Lasers Eng.,30(5),441–459 (1998).

    Article  Google Scholar 

  17. Yoneyama, S., Gotoh, J., andTakashi, M., “Experimental Analysis of Rolling Contact Stresses in a Viscoelastic Strip,” EXPERIMENTAL MECHANICS,40(2),203–210 (2000).

    Article  Google Scholar 

  18. Patterson, E.A. andWang, Z.F., “Simultaneous Observation of Phase-stepped Images for Automated Photoelasticity,”J. Strain Anal. Eng. Des.,33(1),1–15 (1998).

    Google Scholar 

  19. Fujigaki, M., Morimoto, Y., and Toda, H., “Small Displacement Analysis of Micro-accelerometer by Integrated Phase Shifting Method,” Interferometry '99, M. Kujawinska and M. Takeda, eds., Proc. SPIE,3744,101–108 (1999).

  20. Morimoto, Y., Fujigaki, M., and Toda, H., “Real-time Shape Measurement by Integrated Phase-shifting Method,” Interferometry '99, M. Kujawinska and M. Takeda, eds., Proc. SPIE,3744,118–125 (1999).

  21. Morimoto, Y. andFujigaki, M., “Real-time Phase Distribution Analysis in Moire,”Trends in Optical Nondestructive Testing and Inspection, P.K. Rastogi andD. Inaudi, eds., Elsevier, Oxford, 415–432 (2000).

    Google Scholar 

  22. Fujigaki, M., Kim, M.S., Morimoto, Y., and Yabe, M., “Real-time Measurement System for Small Displacement by Integrated Phase-shifting Method and Applications,” Proceedings of the SEM IX International Congress on Experimental Mechanics, Orlando, Florida, 804–807 (2000).

  23. Burger, C.P., “Photoelasticity,”Handbook on Experimental Mechanics, 2nd ed., A.S. Kobayashi, ed., VCH Publishers, New York (1993).

    Google Scholar 

  24. Theocaris, P.S. andGdoutos, E.E., Matrix Theory of Photoelasticity, Springer-Verlag, Berlin (1979).

    Google Scholar 

  25. Greivenkamp, J.E., “Generalized Data Reduction for Heterodyne Interferometry,”Opt. Eng.,23(4),350–352 (1984).

    Google Scholar 

  26. Morimoto, Y., Fujigaki, M., and Iwai, K., “Shape Measurement of Moving Human Body,” Proceedings of the International Conference on Machine Automation, Osaka, 345–350 (2000).

  27. Ekman, M.J. andNurse, A.D., “Absolute Determination of Isochromatic Parameter by Load-stepping Photoelasticity,” EXPERIMENTAL MECHANICS,38(3),189–195 (1998).

    Article  Google Scholar 

  28. Ekman, M.J. andNurse, A.D., “Completely Automated Determination of Two-dimensional Photoelastic Parameters Using Load-stepping,”Opt. Eng.,37(6),1845–1851 (1998).

    Article  Google Scholar 

  29. Liu, T., Asundi, A., andBoay, C.G., “Full-field Automated Photoelasticity Using Two-load-step Method,”Opt. Eng.,40(8),1629–1635 (2001).

    Google Scholar 

  30. Yoneyama, S., Naito, M., andTakashi, M., “Photoelastic Contact Stress Analysis Using Different Wavelength Monochromatic Lights,”Proceedings of the Japan Society of Mechanical Engineers,95(2),509–510 (1995) (in Japanese).

    Google Scholar 

  31. Nurse, A. D., “Full-field Automated Photoelasticity by Use of a Three-wavelength Approach to Phase Stepping,”Appl. Opt.,36(23),5781–5786 (1997).

    Google Scholar 

  32. Berezhna, S., Berezhnyy, I., Takashi, M., andVoloshin, A., “Full-field Automated Photoelasticity by Fourier Polarimetry with Three Wavelengths,”Appl. Opt.,40(1),52–61 (2001).

    Google Scholar 

  33. Mawatari, S., Takashi, M., Toyoda, Y., and Kunio, T., “A Single Valued Representative Function for Determination of Principal Stress Direction in Photoelastic Analysis,” Proceedings of the 9th International Conference on Experimental Mechanics, Copenhagen, 2069–2078 (1990).

  34. Morimoto, Y., Morimoto, Y. Jr, andHayashi, T., “Separation of Isochromatics and Isoclinics Using Fourier Transform,”Experimental Techniques,18(5),13–17 (1994).

    Google Scholar 

  35. Yoneyama, S., Shimizu, M., andTakashi, M., “Higher Retardation Analysis in Automated White Light Photoelasticity,”Experimental Mechanics, I. M. Allison, ed., A.A. Balkema, Rotterdam, 527–532 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoneyama, S., Morimoto, Y., Nomura, T. et al. Real-time analysis of isochromatics and isoclinics using the phase-shifting method. Experimental Mechanics 43, 83–89 (2003). https://doi.org/10.1007/BF02410488

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02410488

Key Words

Navigation