, Volume 10, Issue 1–2, pp 39–44 | Cite as

AgNbO3 dispersed Ag2SO4 composite for potentiometric SO2 gas sensor application

  • J. B. Randhawa
  • P. Ambekar
  • S. S. Bhoga
  • K. Singh


Composite electrolytes of Ag2SO4 is prepared by dispersing fine particles, average particle size <40 microns (350 mesh), of ferroelectric AgNbO3 in varying weight fraction. Enhancement in the conductivity is observed in β-phase of host system. The effect of dispersion on the conductivity, activation energy and transition temperature is studied as a function of weight % of the dispersoid in the host. Two distinct conduction mechanisms, viz. conduction through electrolyte bulk in parallel with conduction along the inter-grain interaction layer (R b ‖R) and perpendicular to the interface (R b ) could be resolved in the frequency range of 5 Hz to 13 MHz at temperatures below 300 °C. The interface interaction is found to be nucleophilic increasing the concentration of Ag+ vacancies at the interface. Potentiometric SO2 gas sensors are tested with this composite electrolyte as an auxiliary phase.


Activation Energy Average Particle Size Weight Fraction Renewable Energy Source Electrical Power Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Gauthier, A. Chamberland and A. Belanger, NATO Advanced Study Inst., Electrode Processes in Solid State Ionics, (1975) Ajaccio, Corsica.Google Scholar
  2. [2]
    K.T. Jacob and D.B. Rao, J. Electrochem. Soc.126, 1842 (1979).Google Scholar
  3. [3]
    M. Gauthier and A. Chamberland, J. Electrochem. Soc.124, 1579 (1977).Google Scholar
  4. [4]
    W.L. Worrell and Q.G. Liu, J. Electroanal Chem.168, 355 (1984).CrossRefGoogle Scholar
  5. [5]
    K. Singh and S.S. Bhoga, Bull. Electrochem.12(11–12), 633 (1996).Google Scholar
  6. [6]
    Q. Liu, X. Sun and W. Wu, Solid State Ionics40/41, 465 (1990).CrossRefGoogle Scholar
  7. [7]
    K. Singh, S.W. Anwane and S.S. Bhoga, Solid State Ionics86–88, 187 (1996).Google Scholar
  8. [8]
    K. Singh, S.M. Pande and S.S. Bhoga, J. Solid State Chemistry116, 232 (1995).Google Scholar
  9. [9]
    K. Singh, J. Randhawa, P. Khadakkar and S.S. Bhaga, Solid State Ionics126, 47 (1999).CrossRefGoogle Scholar
  10. [10]
    K. Singh and S.S. Bhoga, Bull. Mater. Sci.22(2), 71 (1993).Google Scholar
  11. [11]
    S.S. Bhoga, K. Singh, J. Randhawa and P.D. Borkar, Sensors and Actuators B55, 70 (1999).Google Scholar
  12. [12]
    S. Jiang and J.B. Wagner Jr., J. Phys. Chem. Solids56(8), 1113 (1995).Google Scholar
  13. [13]
    J. Maier, J. Phys. Chem. Solids46, 309 (1985) and in Ber. Bunsenges. Phys. Chem.90, 26 (1986).Google Scholar
  14. [14]
    K. Hariharan and J. Maier, J. Electrochem. Soc.142(10), 3469 (1995).Google Scholar
  15. [15]
    K. Singh, S.M. Pande, S.W. Anwane and S.S. Bhoga, Bull. Electrochemistry12(11–12), 652 (1996).Google Scholar
  16. [16]
    O. Nakamura and Y. Saito, Solid State Ionics: Materials and Applications 101 (1992).Google Scholar
  17. [17]
    T. Takeuchi, K. Ado, Y. Saito, M. Tabuchi, H. Okuyama and O. Nakamura, Solid State Ionics86–88, 565(1996).Google Scholar

Copyright information

© IfI - Institute for Ionics 2004

Authors and Affiliations

  • J. B. Randhawa
    • 1
  • P. Ambekar
    • 1
  • S. S. Bhoga
    • 1
  • K. Singh
    • 1
  1. 1.Department of PhysicsNagpur University CampusNagpurIndia

Personalised recommendations