Annals of Biomedical Engineering

, Volume 12, Issue 1, pp 103–116 | Cite as

Spectral analysis of doppler flow velocity signals: Assessment of objectives, methods, and interpretation

  • P. E. Zuech
  • R. S. C. Cobbold
  • K. W. Johnston
  • M. Kassam
Bioengineering Aspects of Noninvasive Diagnosis of Peripheral Vascular Diseases Symposium Presented at the 67th Annual FASEB Meeting in Chicago, April 13, 1983 Under the Sponsorship of the Biomedical Engineering Society

Abstract

Both pulsed and continuous wave Doppler ultrasound systems are finding increased application in the noninvasive assessment of peripheral and carotid arterial disease. An important aspect of such systems is the use of real-time Doppler spectral analysis. It has been shown that spectral analysis can enhance the diagnostic, accuracy and, in the case of carotid assessment, can potentially provide a means for quantification. This paper critically reviews the methods available for real-time analysis and relates the requirements and problems to the design of systems for routine clinical use.

Keywords

Doppler ultrasound Spectral analysis Arterial disease Carotid Peripheral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali, Z.M. A high-speed FFT processor.IEEE Trans. Commun. 26:690–696, 1978.CrossRefGoogle Scholar
  2. 2.
    Brennan, J.M., N.L. Rogers, and F.W. Ingle, Real time analysis of Doppler bloodflow signals.Proceedings of the IEEE Ultrasonics Symposium. 1982, pp. 373–374.Google Scholar
  3. 3.
    Brinker, R.A., D.J. Landiss, and T.F. Croley. Detection of carotid artery bifurcation stenosis by Doppler ultrasound.J. Neurosurg. 29:143–148, 1968.PubMedGoogle Scholar
  4. 4.
    Brown, P.M., K.W. Johnston, M. Kassam, and R.S.C. Cobbold. A critical study of ultrasound Doppler spectral analysis for detecting carotid disease.Ultrasound Med. Biol. 8:515–523, 1982.CrossRefPubMedGoogle Scholar
  5. 5.
    Buss, D.D., D.R. Collins, W.H. Bailey, and C.R. Reeves. Transversal filtering using charge-transfer devices.IEEE J. Solid-State Circuits 8:138–146, 1973.CrossRefGoogle Scholar
  6. 6.
    Childers, D., editorModern Spectrum Analysis, New York: IEEE Press, 1978.Google Scholar
  7. 7.
    Cobbold, R.S.C., P. Veltink, and K.W. Johnston. Influence of beam profile and degree of insonation on the CW Doppler ultrasound spectrum and mean velocity.IEEE Trans. Sonics and Ultrason 30:364–370, 1983.Google Scholar
  8. 8.
    Coghlan, B.A., M.G. Taylor, and D.H. King, On-line display of Doppler-shift spectra by a new time compression analyser. InCardiovascular Applications of Ultrasound, edited by R. S. Reneman. Amsterdam: North-Holland, 1974, pp. 55–65.Google Scholar
  9. 9.
    Douville, Y., J.W. Arenson, K.W. Johnston, R.S.C. Cobbold, and M. Kassam Critical evaluation of continuous wave Doppler probes for carotid studies.J. Clin. Ultrasound 11:83–90, 1983.PubMedGoogle Scholar
  10. 10.
    Douville, Y., K.W. Johnston, M. Kassam, P. Zuech, R.S.C. Cobbold, and T. Jares An in vitro model and its application in the study of carotid Doppler spectral broadening.Ultrasound Med Biol. 9:347–356, 1983.CrossRefPubMedGoogle Scholar
  11. 11.
    Eversole, W.L., D.J. Mayer, P.W. Bosshart, M. de Wit, R.C. Hewes, and D.D. Buss, A completely integrated thirty-two-point chirp z transform.IEEE J. Solid-State Circuits 13:822–831, 1978.CrossRefGoogle Scholar
  12. 12.
    Flax, S.W., J.G. Webster, and S.J. Updike. Statistical evaluation of the Doppler ultrasonic blood flowmeter. InBiomedical Sciences Instrumentation, New York: Plenum Press, 1970, pp. 201–222.Google Scholar
  13. 13.
    Johnston, K.W., M. Kassam, J. Koers, R.S.C. Cobbold, and D. MacHattie. Comparative study of four methods for quantifying Doppler ultrasound waveforms from the femoral artery.Ultrasound Med. Biol. 10:1–12, 1984.CrossRefPubMedGoogle Scholar
  14. 14.
    Johnston, K.W., P.M. Brown, and M. Kassam. Problems of carotid Doppler scanning which can be overcome by using frequency analysisStroke 13:660–666, 1982.PubMedGoogle Scholar
  15. 15.
    Johnston, K.W., M. Kassam, and R.S.C. Cobbold. Online identification of Doppler ultrasound waveforms.Med. Biol. Eng. Comput. 20:336–342, 1982.PubMedGoogle Scholar
  16. 16.
    Johnston, K.W., B.C. Maruzzo, and R.S.C. Cobbold. Doppler methods for quantitative measurement and localization of peripheral arterial occlusive disease by analysis of the blood flow velocity waveform.Ultrasound Med. Biol. 4:209–223, 1978.CrossRefPubMedGoogle Scholar
  17. 17.
    Kaneko, Z., J. Shiraishi, H. Omizo, K. Kato, M. Motomiya, and T. Okumura. An analyzing method of ultrasonic blood rheograph with sonograph.Digest, 6th International Conference Med. Electron. Biolog. Eng. Tokyo, Japan, 1965 pp. 286–287.Google Scholar
  18. 18.
    Kassam, M., R.S.C. Cobbold, P. Zuech, and K.W. Johnston. Quantification of carotid arterial disease by Doppler ultrasound.Proceedings of the IEEE Ultrasonics Symposium 1982, pp. 675–680.Google Scholar
  19. 19.
    Kay, S.M. and S.L. Marple. Spectrum analysis—a modern perspective.Proc. IEEE 69:1380–1419, 1981.Google Scholar
  20. 20.
    Light, L.H. A recording spectrograph, for analysing Doppler blood velocity signals (particularly from aortic flow) in real time.J. Physiol. 207:42–44, 1970.Google Scholar
  21. 21.
    Pettengill, R.C., P.W. Bosshart, M. de Wit, and C.R. Hewes. A monolithic 512 point chirp z transform processor.Digest, IEEE Solid-State Circuits Conference, Philadelphia, Pennsylvania 1979, pp. 68–69.Google Scholar
  22. 22.
    Risk, R.J. Efficient hard-wired digital fast-Fourier-transform processor.Electron. Lett. 13:458–459 1977.Google Scholar
  23. 23.
    Schirm, L. Packing a signal processor onto a single digital board.Electronics 52:109–115, 1979.Google Scholar
  24. 24.
    Shung, K.K., R.A. Sigelmann, and J.M. Reid, Seattering of ultrasound by blood.IEEE Trans. Biomed. Eng. 23:460–467, 1976.PubMedGoogle Scholar
  25. 25.
    Stevens, A. and C. Roberts. Online signal processing of CW Doppler shifted ultrasound.Digest, 11th International Conference Med. Biol. Eng. 1976, pp. 160–161.Google Scholar
  26. 26.
    Wardrop, B. and E. Bull. A discrete Fourier transform, processor using charge-coupled devices.Marconi Rev. 40:1–41, 1977.Google Scholar
  27. 27.
    Yao, S.T. and T.N. Needham. Frequency analysis of Doppler-shifted bloodflow signals by a bandpass filter: Preliminary report.Biomed. Eng. 5:438–442, 1970.PubMedGoogle Scholar
  28. 28.
    Zuech, P., R.S.C. Cobbold, M. Kassam, and K.W. Johnston, Application of real-time spectral analysis for Doppler ultrasound assessment of vascular disease.Ist Acoustics Speech and Signal Processing Society Workshop on Spectral Estimation. Hamilton, Ontario 2:7.5.1–7, 1981.Google Scholar
  29. 29.
    Zuech, P., R.S.C. Cobbold, M. Kassam, and K.W. Johnston. On the application of CCD transversal filters for real-time spectral analysis of Doppler ultrasound arterial signals.Ultrasound Med. Biol. 8:57–69, 1982.CrossRefGoogle Scholar

Copyright information

© Pergamon Press Ltd. 1984

Authors and Affiliations

  • P. E. Zuech
    • 1
  • R. S. C. Cobbold
    • 1
  • K. W. Johnston
    • 1
  • M. Kassam
    • 1
  1. 1.Institute of Biomedical Engineering and Department of SurgeryUniversity of TorontoTorontoCanada

Personalised recommendations