Advertisement

Calcified Tissue International

, Volume 33, Issue 1, pp 105–109 | Cite as

ESR of CO 2 in X-irradiated tooth enamel and A-type carbonated apatite

  • G. Bacquet
  • Vo Quang Truong
  • M. Vignoles
  • J. C. Trombe
  • G. Bonel
Laboratory Investigation

Summary

Using both low microwave power and weak magnetic field modulation, we have shown that the asymmetric signal arising in X-irradiated tooth enamel as well as in A-type carbonated apatite exposed to X-rays or to excited oxygen has an orthorhombic character and must be attributed to CO 2 . Effectively, the mean values found for the three g-tensor components are comparable to those quoted for this defect in single-crystal specimens of calcite and sodium formate.

Key words

ESR Free radicals Apatite Enamel Irradiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Den Hartog, H.W., Benning, H.: Paramagnetic color centers in calcium chlorapatite doped with F ions, Phys. Stat. Sol. (a)43:633–638, 1977Google Scholar
  2. 2.
    Cole, T., Silver, A.: Production of hydrogen atoms in teeth by X-irradiation, Nature200:700–701, 1963PubMedGoogle Scholar
  3. 3.
    Prener, J.S., Piper, W.W., Chrenko, R.M.: Hydroxide and oxide impurities in calcium halophosphates, J. Phys. Chem. Solids30:1465–1481, 1969CrossRefGoogle Scholar
  4. 4.
    Piper, W.W., Kravitz, L.C., Swank, K.R.: Axially symmetric paramagnetic color centers in fluorapatites, Phys. Rev.138A:1802–1814, 1965CrossRefGoogle Scholar
  5. 5.
    Mengeot, M., Bartram, R.H., Gilliam, O.R.: Paramagnetic hole-like defect in irradiated calcium hydroxyapatite single crystals, Phys. Rev.B11:4110–4124, 1975Google Scholar
  6. 6.
    Roufosse, A., Stapelbrock, M., Bartram, R.H., Gilliam, O.R.: Oxygen associated hole-like centers in calcium chlorapatite, Phys. Rev.B9:855–862, 1974Google Scholar
  7. 7.
    Knottnerus, D.I.M., Den Hartog, H.W., Van Der Lugt, W.: Optical and EPR investigations of colour centres in calcium chlorapatite, Phys. Stat. Sol. (a)13:505–515, 1972Google Scholar
  8. 8.
    Knottnerus, D.I.M., Den Hartog, H.W.: Axially non symmetric hole centers in calcium chlorapatite, Phys. Stat. Sol. (a)23:183–193, 1975Google Scholar
  9. 9.
    Bacquet, G., Vo Quang Truong, Bonel, G., Vignoles, M.: Résonance paramagnétique électronique du centre F+ dans les fluorapatites carbonatées de type B, J. Sol. State Chem.33:189–195, 1980CrossRefGoogle Scholar
  10. 10.
    Dugas, J., Rey, C.: Electron spin resonance characterization of superoxide ions in some oxygenated apatites, J. Phys. Chem.81:1417–1419, 1977CrossRefGoogle Scholar
  11. 11.
    Dugas, J., Bejjaji, B., Sayah, D., Trombe, J.C.: Etude par RPE de l'ion NO2 2− dans une apatite nitrée, J. Sol. State Chem.24:143–151, 1978CrossRefGoogle Scholar
  12. 12.
    Roufosse, A., Richelle, L.J., Gilliam, O.R.: Electron spin resonance of organic free radicals in dental enamel and other calcified tissues, Arch. Oral Biol.21:227–232, 1976CrossRefPubMedGoogle Scholar
  13. 13.
    Tochon-Danguy, H.J., Very, J.M., Geoffroy, M., Baud, C.A.: Paramagnetic and crystallographic effects of low temperature ashing on human bone and tooth enamel, Calcif. Tissue Res.25:99–104, 1978CrossRefPubMedGoogle Scholar
  14. 14.
    Cevc, P., Schara, M., Ravnik, C.: Electron paramagnetic resonance study of irradiated tooth enamel, Radiat. Res.51:581–589, 1972Google Scholar
  15. 15.
    Gilinskaya, L.G., Shcherbakova, M. Ya., Zanin, Yu. N.: Carbon in the structure of apatite according to the electron paramagnetic resonance data, Sov. Phys. Cryst.15:1016–1019, 1971Google Scholar
  16. 16.
    Serway, R.A., Marshall, S.A.: Electron spin resonance absorption spectra of CO3 and CO3 3− molecule ions in irradiated single crystal calcite, J. Chem. Phys.46:1949–1952, 1967CrossRefGoogle Scholar
  17. 17.
    Labarthe, J.C., Bonel, G., Montel, G.: Sur la structure et les propriétés des apatites carbonatées de type B phosphocalciques, Ann. Chim.8:289–301, 1973Google Scholar
  18. 18.
    Dupré La Tour, F., Boudjicanian, K.: Procédé simplifié de minéralisation des tissus à basse température, Ann. Biol. Clin.28:303–307, 1970Google Scholar
  19. 19.
    Legros, R.: Contribution à l'étude physicochimique de la phase minérale du squelette des vertébrés, Thèse de 3ème Cycle, Toulouse, 1978Google Scholar
  20. 20.
    Walsh, A.D.: The electronic orbitals, shapes and spectra of polyatomic molecules. Part V. Tetratomic non-hydride molecules AB3, J. Chem. Soc.Google Scholar
  21. 21.
    Van Willigen, H., Roufosse, A.H., Glimcher, M.J.: Proton and phosphorous ENDOR on paramagnetic centers in X-irradiated, oriented human tooth enamel, Calcif. Tissue Int. (in press)Google Scholar
  22. 22.
    Sato, K.: Study of an asymmetric ESR signal in X-irradiated human tooth enamel, Calcif. Tissue Int.29:95–99, 1979PubMedGoogle Scholar
  23. 23.
    Marshall, S.A., Reinberg, A.R., Serway, R.A., Hodges, J.A.: Electron spin resonance absorption spectrum of CO2 molecule ions in single crystal calcite, Mol. Phys.8:225–231, 1964Google Scholar
  24. 24.
    Ovenall, D.W., Whiffen, D.H.: Electron spin resonance and structure of the CO2 radical ion, Mol. Phys.4:135–144, 1961Google Scholar
  25. 25.
    Chantry, G.W., Horsfield, A., Morton, J.R., Whiffen, D.H.: The structure, electron resonance and optical spectra of trapped CO3 and NO3, Mol. Phys.5:589–599, 1962CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • G. Bacquet
    • 1
  • Vo Quang Truong
    • 1
  • M. Vignoles
    • 2
  • J. C. Trombe
    • 2
  • G. Bonel
    • 2
  1. 1.Laboratoire de Physique des SolidsAssocié au C.N.R.S.Toulouse CédexFrance
  2. 2.E.R.A. 263ToulouseFrance

Personalised recommendations