The Histochemical Journal

, Volume 28, Issue 10, pp 681–687 | Cite as

Sphingolipid activator proteins in a human hereditary renal disease with deposition of disialogangliosides

  • Anni Haltia
  • Marja-Liisa Solin
  • Hannu Jalanko
  • Christer Holmberg
  • Aaro Miettinen
  • Harry Holthöfer


Congenital nephrotic syndrome of the Finnish type is a recessively inherited renal disease with glomerular deposits of the disialogangliosideO-acetyl-GD3. Sphingolipid activator proteins (saposins) stimulate the degradation of glycosphingolipids by lysosomal enzymes, and defects in saposins cause accumulation of substrate lipids in the affected tissues in lysosomal storage diseases. Here we report a study of the role of saposins in the accumulation ofO-acetyl-GD3 in kidneys of congenital nephrotic syndrome patients. At the mRNA level, the expression of saposin precursor in diseased kidneys appeared normal, and the nucleotide sequence analysis of cDNA clones did not reveal abnormalities in the prosaposin gene. Immunohistologically, saposins were localized mainly to the epithelial cells of the distal renal tubules or to the parietal epithelial cells of glomeruli. In the nephrotic syndrome kidneys, the staining pattern was highly granular and appeared mostly in the apical part of the epithelial lining, unlike the control kidneys. These results show that a major site of ganglioside metabolism is located in the distal nephron. Furthermore, these results suggest that saposins are not directly involved in the metabolism of the terminal sialic acids of disialogangliosides in the nephrotic syndrome kidneys.


Nephrotic Syndrome Sialic Acid Nucleotide Sequence Analysis Lysosomal Storage Disease Distal Nephron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bremer, E. G., Schlessinger, J., &Hakomori, S.-I. (1986) Ganglioside mediated modulation of cell growth.J. Biol. Chem. 261, 2434–40.PubMedGoogle Scholar
  2. Cheresh, D. A., Varki, A. J., Varki, N. M., Stallcup, W. B., Lewine, J. &Reisfeld, R. A. (1984) A monoclonal antibody recognizes an O-acetylated sialic acid in a human melanoma-associated ganglioside.J. Biol. Chem. 259, 7453–9.PubMedGoogle Scholar
  3. Cheresh, D. A., Pierschbacher, M. D., Herzig, M. A. &Mujoo, K. (1986) Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins.J. Cell Biol. 102, 688–96.PubMedGoogle Scholar
  4. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. &Rutter, W. J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry 18, 5294–9.CrossRefPubMedGoogle Scholar
  5. Conzelmann, E. &Sandhoff, K. (1978) AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2.Proc. Natl. Acad. Sci. USA 75, 3979–83.PubMedGoogle Scholar
  6. Fingerhut, R., Van der Horst, G., Verheijen, F. W. &Conzelmann, E. (1992) Degradation of gangliosides by the lysosomal sialidase requires an activator protein.J. Biochem. 208, 623–9.Google Scholar
  7. Fishman, P. H. &Brady, R. O. (1976) Biosynthesis and function of gangliosides.Science 194, 906–15.PubMedGoogle Scholar
  8. Fürst, W. &Sandhoff, K. (1992) Activator proteins and topology of lysosomal sphingolipid catabolism.Biochim. Biophys. Acta 1126, 1–16.PubMedGoogle Scholar
  9. Hallman, N., Hjelt, L. &Ahvenainen, E. K. (1956) Nephrotic syndrome in newborn and young infants.Ann. Pediatr. Fenn. 2, 227–41.Google Scholar
  10. Hiraiwa, M., Soeda, S., Kishimoto, Y. &O'Brien, J. S. (1992) Binding and transport of gangliosides by prosaposin.Proc. Natl. Acad. Sci. USA 89, 11254–8.PubMedGoogle Scholar
  11. Holmberg, C., Antikainen, M., Rönnholm, K., Alahouhala, M. &Jalanko, H. (1995) Management of the congenital nephrotic syndrome of the Finnish type.Pediatr. Nephrol. 9, 87–93.CrossRefPubMedGoogle Scholar
  12. Holthöfer, H., Reivinen, J. &Miettinen, A. (1990) Acidic glycolipids in human glomeruli. Evidence of specific changes in congenital nephrosis of the Finnish type.J. Am. Soc. Nephrol. (abstract)1.Google Scholar
  13. Hsiao, K. (1991) A fast and simple procedure for sequencing double stranded DNA with sequenase.Nucl. Acid. Res. 19, 2787.Google Scholar
  14. Inui, K., Emmett, M. &Wenger, D. A. (1983) Immunological evidence for deficiency in an activator protein for sulfatide sulfatase in a variant form of metachromatic leukodystrophy.Proc. Natl. Acad. Sci. USA 80, 3074–7.PubMedGoogle Scholar
  15. Kishimoto, Y., Hiraiwa, M. &O'Brien, J. S. (1992) Saposins: structure, function, distribution, and molecular genetics.J. Lipid Res. 33, 1255–67.PubMedGoogle Scholar
  16. Kojima, N. &Hakomori, S.-I. (1989) Specific interaction between triaosylceramide (Cg3) and sialosyllactosyl-ceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells.J. Biol. Chem. 264, 20159–62.PubMedGoogle Scholar
  17. Kretz, K. A., Carson, G. S., Morimoto, S., Kishimoto, Y., Fluharty, A. L. &O'Brien, J. S. (1990) Characterization of a mutation in a family with saposin B deficiency: A glycosylation site defect.Proc. Natl. Acad. Sci. USA 87, 2541–4.PubMedGoogle Scholar
  18. Krug, M. S. &Berger, S. L. (1987) First strand cDNA synthesis primed with oligo(dT). InMethods in Enzymology (edited byBerger, S. L. &Kimmel, A. R.) pp. 316–25. San Diego: Academic Press.Google Scholar
  19. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–5.CrossRefPubMedGoogle Scholar
  20. Li, S.-C., Sonnino, S., Tettamanti, G. &Li, Y.-T. (1988) Characterization of nonspecific activator protein for the enzymatic hydrolysis of glycolipids.J. Biol. Chem. 263, 6588–91.PubMedGoogle Scholar
  21. Miettinen, A., Dekan, G. &Farquhar, M. G. (1990) Monoclonal antibodies against membrane proteins of rat glomerulus.Am. J. Pathol. 137, 929–44.PubMedGoogle Scholar
  22. Morimoto, S., Yamamoto, Y., O'Brien, J. S. &Kishimoto, Y. (1990) Distribution of saposin proteins (sphingolipid activator proteins) in lysosomal storage and other diseases.Proc. Natl. Acad. Sci. USA 87, 3493–7.PubMedGoogle Scholar
  23. Nojiri, H., Takaku, F., Terui, Y., Miura, Y. &Saito, M. (1986) Ganglioside GM3: An acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U 937.Proc. Natl. Acad. Sci. USA 83, 782–6.PubMedGoogle Scholar
  24. O'Brien, J. S. &Kishimoto, Y. (1991) Saposin proteins: structure, function, and role in human lysosomal storage disorders.FASEB J. 5, 301–8.PubMedGoogle Scholar
  25. Sambrook, J., Fritsch, E. F. &Maniatis, T. (1989)Molecular cloning. A Laboratory Manual. 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  26. Sanger, F., Nicklen, S. &Coulson, A. R. (1977) DNA sequencing with chain terminating inhibitors.Proc. Natl. Acad. Sci. USA 74, 5463–7.PubMedGoogle Scholar
  27. Sano, A., Hineno, T., Mizuno, T., Kondoh, K., Ueno, S.-I., Kakimoto, Y. &Inui, K. (1989) Sphingolipid hydrolase activator proteins and their precursors.Biochem. Biophys. Res. Commun. 165, 1191–7.CrossRefPubMedGoogle Scholar
  28. Schnabel, D., Schröder, M. &Sandhoff, K. (1991) Mutation in the sphingolipid activator protein 2 in a patient with a variant form of Gaucher disease.FEBS Lett. 284, 57–9.CrossRefPubMedGoogle Scholar
  29. Schnabel, D., Schröder, M., Fürst, W., Klein, A., Hurwitz, R., Zenk, T., Weber, J., Harzer, K., Paton, B. C., Poulos, A., Suzuki, K. &Sandhoff, K. (1992) Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene.J. Biol. Chem. 267, 3312–5.PubMedGoogle Scholar
  30. Shayman, J. A. &Radin, N. S. (1991) Structure and function of renal glycosphingolipids.Am. J. Physiol. 260, F291–302.PubMedGoogle Scholar
  31. Tamaru, T., Fujibayashi, S., Brown, W. R. &Wenger, D. A. (1985) Immunocytochemical localization of sphingolipid activator protein-1, the sulfatide/GM1 ganglioside activator, to lysosomes in human liver and colon.Histochemistry 86, 195–200.Google Scholar
  32. Vaccaro, A. M., Ciaffoni, F., Tatti, M., Salvioli, R., Barca, A., Tognozzi, D. &Scerch, C. (1995) pH-dependent conformational properties of saposins and their interactions with phospholipid membranes.J. Biol. Chem. 270, 30576–80.PubMedGoogle Scholar
  33. Van Echten, G. &Sandhoff, K. (1993) Ganglioside metabolism. Enzymology, topology, and regulation.J. Biol. Chem. 268, 5341–4.PubMedGoogle Scholar
  34. Varki, A., Hooshmand, F., Diaz, S., Varki, N. &Hedrick, S. M. (1991) Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9-O-acetylesterase.Cell 65, 65–74.CrossRefPubMedGoogle Scholar
  35. Wenger, D. A., Degala, G., Williams, C., Taylor, H. A., Stevenson, R. E., Fruitt, J. R., Miller, J., Garen, P. D. &Balentine, J. D. (1989) Clinical, pathological, and biochemical studies on an infantile case of sulfatide/GM1 activator protein deficiency.Am. J. Med. Genet. 33, 255–65.CrossRefPubMedGoogle Scholar
  36. Whitehead, T. P., Thorpe, G. H. G., Carter, T. J. N., Groucutt, C. &Kricka, L. J. (1983) Enhanced luminescence procedure for sensitive determination of peroxidase labelled conjugates in immunoassay.Nature 305, 158–9.CrossRefGoogle Scholar
  37. Zhang, X.-L., Rafi, M. A., Degala, G. &Wenger, D. A. (1990) Insertion in the mRNA of metachromatic leukodystrophy patient with sphingolipid activator protein-1 deficiency.Proc. Natl. Acad. Sci. USA 87, 1426–30.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Anni Haltia
    • 1
  • Marja-Liisa Solin
    • 1
  • Hannu Jalanko
    • 2
  • Christer Holmberg
    • 2
  • Aaro Miettinen
    • 1
  • Harry Holthöfer
    • 1
  1. 1.Department of Bacteriology and ImmunologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Children's HospitalUniversity of HelsinkiHelsinkiFinland

Personalised recommendations