Advertisement

Hyperfine Interactions

, Volume 50, Issue 1–4, pp 625–638 | Cite as

Mössbauer studies of ZnCr1.7857Fe0.02Ga0.2O4 spinel using magnetic fields

  • J. L. Dormann
  • S. C. Bhargava
  • J. Jové
  • D. Fiorani
Magnetic Oxide Compounds

Abstract

Mössbauer57Fe studies have been performed on the ZnCr1.78Fe0.02Ga0.2O4 spinel without and with external field. A spin-spin relaxation model has been used to fit the spectra and is compared to other models. The results are consistent with the existence of magnetic entities, disunited from the infinite matrix, which block progressively at low temperature. The magnetic order of the entities as well as the infinite matrix resembles speromagnetic order.

Keywords

Magnetic Field Thin Film External Field Magnetic Order Relaxation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Sekizawa, T. Okada, S. Okamoto and F. Ambe, J. Physique C1-32 (1971) C1–326.Google Scholar
  2. [2]
    J.C. Love and F.E. Obenshain, AIP Conf. Proc. n°18, MMM Conf., Boston, 1973 (1974) p. 513.Google Scholar
  3. [3]
    J. Göring, W. Wurtinger and R. Link, J. Appl. Phys. 49 (1978) 269.CrossRefADSGoogle Scholar
  4. [4]
    P. Gütlich, K.M. Hasselbach, H. Rummel and H. Spiering, J. Chem. Phys. 81 (1984) 1396.CrossRefADSGoogle Scholar
  5. [5]
    J.J. Bara, Z.M. Stadnik, G. Czjzek, J. Fink, V. Oestreich and H. Schmidt, Hyp. Int. Proc. XVII Winter School, Bielsko-Biata, Poland, 1979, ed. R. Kulessa and K. Krolas (Cracow, 1979) p. 93.Google Scholar
  6. [6]
    J.C. Love, F.E. Obenshain and G. Czjzek, Phys. Rev. B 3 (1971) 2827.CrossRefADSGoogle Scholar
  7. [7]
    R.E. Watson and A.J. Freeman, Phys. Rev. 120 (1960) 1134.CrossRefADSGoogle Scholar
  8. [8]
    D. Gryffroy and R.E. Vandenberghe, Abstr. Mössb. Spec. Disc. Group, Oxford, 1984, p. P29.Google Scholar
  9. [9]
    R.E. Vandenberghe, G.G. Robbrecht and V.A.M. Brabers, Phys. Stat. Sol. (a) 34 (1976) 583.Google Scholar
  10. [10]
    V.A.M. Brabers, Phys. Stat. Sol. (a) 12 (1972) 629.Google Scholar
  11. [11]
    G. Blasse, J. Phys. Chem. Solids 27 (1966) 383.CrossRefGoogle Scholar
  12. [12]
    S. Margulies, P. Debrunner and H. Frauenfelder, Nucl. Instr. Meth. 21 (1963) 217.CrossRefGoogle Scholar
  13. [13]
    D. Gryffroy and R.E. Vandenberghe, Nucl. Instr. Meth. 207 (1983) 455.CrossRefGoogle Scholar
  14. [14]
    F.E. Obenshain, in:Mössbauer Effect Data Index-1972, eds. J.G. Stevens and V.E. Stevens (Plenum Press, New York, 1973) p. 13.Google Scholar
  15. [15]
    B.C. Tofield and B.E.F. Fender, J. Phys. Chem. Solids 31 (1970) 2741.CrossRefGoogle Scholar
  16. [16]
    J.J. Bara, Phys. Stat. Sol. (a) 44 (1977) 737.Google Scholar
  17. [17]
    A. Hauet, J. Teillet, B. Hannoyer and M. Lenglet, Phys. Stat. Sol. (a) 103 (1987) 257.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1989

Authors and Affiliations

  • J. L. Dormann
    • 1
  • S. C. Bhargava
    • 1
  • J. Jové
    • 2
  • D. Fiorani
    • 3
  1. 1.Lab. de MagnétismeCNRSMeudon-CédexFrance
  2. 2.Institut CurieGroupe des éléments transuraniensParis CédexFrance
  3. 3.ITSE, CNRMonterotondo StazioneItaly

Personalised recommendations