Hyperfine Interactions

, Volume 50, Issue 1–4, pp 489–497 | Cite as

Magnetism in plant and mammalian ferritin

  • E. R. Bauminger
  • I. Nowik
Oral Presentations

Abstract

A rich variety of magnetic phenomena is observed in Mössbauer studies of ferritin. Depending on the amount of iron in the horse spleen ferritin core, a paramagnetic relaxation spectrum, or quadrupole split doublet or a magnetically split sextet showing superpara-magnetism, are obtained a 4.1 K. Mössbauer studies of the recently prepared iron loaded concanavalin A yield hyperfine parameters identical to those found previously in mammalian ferritin, yet show the existence of larger iron aggregates. Due to the larger particle size it is possible to follow the magnetic hyperfine field and to obtain the magnetic ordering temperature as 240 K. This is exactly the Neél temperature of ferrihydrite, thus establishing that this is indeed the iron compound in the ferritin core.

Keywords

Ferritin Quadrupole Split Concanavalin Hyperfine Field Large Particle Size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.C. Theil, Annu. Rev. Biochem. 56 (1987) 289.CrossRefGoogle Scholar
  2. [2]
    W.H. Massover and J.M. Cowley, Proc. Natl. Acad. Sci. 70 (1973) 3847.ADSGoogle Scholar
  3. [3]
    G.C. Ford, P.M. Harrison, D.W. Rice, J.M.A. Smith, A. Treffry, J.L. White and J. Yariv, Phil. Trans. R. Soc. London, B 304 (1984) 551.ADSGoogle Scholar
  4. [4]
    J.H. Johnston and D.G. Lewis, Geochim. Cosmochim. Acta 47 (1983) 1823.CrossRefADSGoogle Scholar
  5. [5]
    E.M. Murad and U. Schwertmann, Amer. Min. 65 (1980) 1044.Google Scholar
  6. [6]
    S.H. Bell, M.P. Weir, D.P.E. Dickson, J.F. Gibson, G.A. Sharp and T.J. Peters, Biochim. Biophys. Acta 787 (1984) 227.Google Scholar
  7. [7]
    E.R. Bauminger, P.M. Harrison, I. Nowik and A. Treffry, Biochem. (1989) in print.Google Scholar
  8. [8]
    E.R. Bauminger, S.G. Cohen, D.P.E. Dickson, A. Levy, S. Ofer and J. Yariv, Biochim. Biophys. Acta 623 (1980) 237; T.G. St. Pierre, S.H. Bell, D.P.E. Dickson, S. Mann, J. Webb, G.R. Moore and R.J.P. Williams, Biochim. Biophys. Acta 8870 (1986) 127.Google Scholar
  9. [9]
    G.D. Watt, R.B. Frankel, G.C. Papaefthymiou, K. Spartalian and E.I. Stiefel, Biochem. 25 (1986) 4330.CrossRefGoogle Scholar
  10. [10]
    R.R. Chrichton, Y. Ponce-Ortiz, M.H.J. Koch, R. Parfait and H.B. Stuhrmann, Biochem. J. 171 (1978) 349.Google Scholar
  11. [11]
    K. Spartalian, W.T. Oosterhuis and N. Smarra, Biochim. Biophys. Acta 399 (1975) 203.Google Scholar
  12. [12]
    J. Yariv, A.J. Kalb-Gilboa, J.R. Helliwell, M.Z. Papiz, E.R. Bauminger and I. Nowik, J. Biol. Chem. 263 (1988) 13508.Google Scholar
  13. [13]
    C. Yang, A. Meagher, B.H. Huynh, D.S. Sayers and E.C. Theil, Biochem. 26 (1987) 497.CrossRefGoogle Scholar
  14. [14]
    S. Mørup, J.A. Dumesic and H. Topsoe, in:Application of Mössbauer Spectroscopy II, ed. R.C. Cohen (Academic Press, 1980) p. 1.Google Scholar
  15. [15]
    T.G. St. Pierre, D.P.E. Dickson, J.K. Kirkwood, R.J. Ward and T.J. Peters, Biochim. Biophys. Acta 924 (1987) 447.Google Scholar
  16. [16]
    T.G. St. Pierre, R.K. Pollard, D.P.E. Dickson, R.J. Ward and T.J. Peters, Biochim. Biophys. Acta 952 (1988) 158.Google Scholar
  17. [17]
    Bibliography of Magnetic Materials, compiled by T.F. Connely and E.D. Copenhaver (Plenum Press, N.Y., 1972).Google Scholar
  18. [18]
    J.C. Chadwick, D.H. Jones, M.F. Thomas and M. Devenish, Hyp. Int. 28 (1986) 537.CrossRefGoogle Scholar
  19. [19]
    D.P.E. Dickson, N.M.K. Reid, S. Mann, V.J. Wade, A.J. Nard and T.J. Peters, Biochim. Biophys. Acta, submitted.Google Scholar
  20. [20]
    S. Mørup and J.E. Knudsen, Acta Chim. Hungaria 121 (1986) 147.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1989

Authors and Affiliations

  • E. R. Bauminger
    • 1
  • I. Nowik
    • 1
  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations