Advertisement

Hyperfine Interactions

, Volume 62, Issue 1–2, pp 55–64 | Cite as

Structural tailoring of silicon chalcogenide glasses: Compositional control of edge-sharing units as monitored by high-resolution29Si solid state NMR

  • Kelly Moran
  • Robert Shibao
  • Hellmut Eckert
Article

Abstract

29Si MAS-NMR data provide strong evidence for the presence of edgesharing tetrahedra in non-oxide chalcogenide glasses derived from SiS2 and SiSe2. The spectra show three distinct peaks which have been assigned on the basis of suitable model compound studies. It is further shown that the fraction of edge-sharing can be controlled by compositional parameters. In glassy SiSe2 both the presence of excess selenium and additional network formers such as phosphorus selenide are shown to diminish the degree of edge-sharing due to the formation of Si-Se-Se or Si-Se-P bonds. In glassy SiS2 a similar effect can be accomplished by a network modifier such as Li2S. In the latter case, the creation of nonbridging chalcogen atoms is accompanied by a concomitant decrease of edge-sharing tetrahedra.

Keywords

Selenium Model Compound Selenide Suitable Model Distinct Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.A. Dembovskii and E.A. Chechetkina, J. Noncryst. Solids 85 (1986) 346.CrossRefGoogle Scholar
  2. [2]
    P. Boolchand, Hyp. Int. 27 (1986) 3.CrossRefGoogle Scholar
  3. [3]
    J.C. Phillips, J. Noncryst. Solids 43 (1981) 37.CrossRefGoogle Scholar
  4. [4]
    J.C. Phillips, J. Noncryst. Solids 34 (1979) 153.CrossRefGoogle Scholar
  5. [5]
    R. Zallen,The Physics of Amorphous Solids, (John Wiley & Sons, New York, 1983).Google Scholar
  6. [6]
    C.A. Angell, J. Noncryst. Solids 73 (1985) 1.CrossRefGoogle Scholar
  7. [7]
    M. Tenhover, R.D. Boyer, R.S. Henderson, T.E. Hammond and G.A. Shreve, Solid State Commun. 65 (1988) 1517.CrossRefGoogle Scholar
  8. [8]
    D.A. Lathrop and H. Eckert, J. Noncryst. Solids 106 (1988) 417.CrossRefGoogle Scholar
  9. [9]
    D.A. Lathrop and H. Eckert, J. Am. Chem. Soc. 111 (1989) 3536.CrossRefGoogle Scholar
  10. [10]
    D.A. Lathrop and H. Eckert, J. Phys. Chem. 93 (1989) 7895.CrossRefGoogle Scholar
  11. [11]
    M. Tullius, D.A. Lathrop and H. Eckert, J. Phys. Chem. 1990, in press.Google Scholar
  12. [12]
    H. Eckert, Z. Zhang and J.H. Kennedy, J. Noncryst. Solids 107 (1989) 271.CrossRefGoogle Scholar
  13. [13]
    Z. Zhang, J.H. Kennedy, J. Thompson, S. Anderson, D.A. Lathrop and H. Eckert, Appl. Phys. A 49 (1989) 41.CrossRefADSGoogle Scholar
  14. [14]
    W. Muller-Warmuth and H. Eckert, Phys. Rep. 88 (1982) 91.CrossRefADSGoogle Scholar
  15. [15]
    P.J. Bray, J. Noncryst. Solids 73 (1985) 19.CrossRefGoogle Scholar
  16. [16]
    G.L. Turner, R.J. Kirkpatrick, S.H. Risbud and E. Oldfield, Am. Ceram. Soc. Bull. 66 (1987) 656.Google Scholar
  17. [17]
    L.F. Gladden, T.A. Carpenter and S.R. Elliott, Phil. Mag. B 53 (1986) L81.Google Scholar
  18. [18]
    H.G. Horn and M. Hemeke, Chemiker-Ztg. 110 (1986) 18.Google Scholar
  19. [19]
    J. Pikies and W. Wojnowski, Z. Anorg. Allg. Chem. 511 (1984) 219.CrossRefGoogle Scholar
  20. [20]
    S. Ramdas and J. Klinowski, Nature 308 (1984) 521.CrossRefGoogle Scholar
  21. [21]
    R. Radeglia and G. Engelhardt, Chem. Phys. Lett. 114 (1985) 28.CrossRefADSGoogle Scholar
  22. [22]
    M. Tenhover, R.S. Henderson, D. Lukco, M.A. Hazle and R.K. Grasselli, Solid State Commun. 51 (1984) 455.CrossRefGoogle Scholar
  23. [23]
    M. Tenhover, M.A. Hazle and R.K. Grasselli, Phys. Rev. Lett. 51 (1983) 404.CrossRefADSGoogle Scholar
  24. [24]
    J.E. Griffiths, M. Malyi, G.P. Espinosa and J.P. Remeika, Phys. Rev. B 30 (1984) 6978.CrossRefADSGoogle Scholar
  25. [25]
    R.W. Johnson, D.L. Price, S. Susman, M. Arai, T.I. Morrison and G.K. Shenoy, J. Noncryst. Solids 83 (1986) 251.CrossRefGoogle Scholar
  26. [26]
    G.R. Holzman, J.H. Anderson and W. Koth, Phys. Rev. 98 (1955) 542.CrossRefADSGoogle Scholar
  27. [27]
    K.R. Carduner, R.O. Carter III, M.E. Milberg and G.M. Crosbie, Anal. Chem. 59 (1987) 2794.CrossRefGoogle Scholar
  28. [28]
    R.W. Johnson, S. Susman, J. McMillan and K.J. Volin, Mater. Res. Bull. 21 (1986) 41.CrossRefGoogle Scholar
  29. [29]
    A.R. Grimmer, M. Magi, M. Hahnert, H. Stade, A. Samoson, W. Wieker and E. Lippmaa, Phys. Chem. Glasses 25 (1984) 105.Google Scholar
  30. [30]
    R. Dupree, D. Holland, P.W. McMillan and R.F. Pettifer, J. Noncryst. Solids 68 (1984) 399.CrossRefGoogle Scholar
  31. [31]
    E. Schneider, J.F. Stebbins and A. Pines, J. Noncryst. Solids 89 (1987) 317.CrossRefGoogle Scholar
  32. [32]
    H. Eckert, J.H. Kennedy, A. Pradel and M. Ribes, J. Noncryst. Solids, in press.Google Scholar
  33. [33]
    H.J. Backer and J.B.G. Hurenkamp, Rec. Trav. Chim. 61 (1942) 802.Google Scholar
  34. [34]
    H.J. Backer and F. Stienstra, Rec. Trav. Chim. 52 (1933) 912.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1990

Authors and Affiliations

  • Kelly Moran
    • 1
  • Robert Shibao
    • 1
  • Hellmut Eckert
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaSanta Barbara, GoletaUSA

Personalised recommendations