Hyperfine Interactions

, Volume 61, Issue 1–4, pp 1117–1120 | Cite as

Calculation of EFGs in high Tc superconductors

  • C. Ambrosch-Draxl
  • P. Blaha
  • K. Schwarz


The electric field gradients (EFGs) at all atomic positions of YBa2Cu3O7 and YBa2Cu3O6 are calculated on the basis of full potential linearized augmented plane wave calculations by an ab initio method. Cood agreement with experimental EFGs is found for all oxygen positions in YBa2Cu3O7 and the Cu1 position in both compounds, while for the Cu2 position in the superconductor the symmetry of the EFG agrees with experiment but the magnitude of our theoretical EFG is only half the experimental value. A small transfer of 0.07 electrons from d(x2−y2) to d(z2) symmetry would be sufficient to achleve agreement with experiment. Thus the underlying local density approximation is not perfect, but remains a very accurate method for describing ground state properties.


Plane Wave Density Approximation Local Density Field Gradient Full Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    Local Density Approximations in Quantum Chemistry and Solids. eds. J.P. Dahl and J. Avery, (Plenum Press, New York, 1983)Google Scholar
  2. /2/.
    F.J. Adrian, Phys. Rev. B 38 (1988) 2426.CrossRefADSGoogle Scholar
  3. /3/.
    H. Lütgemeler, Physica C 153–188 (1988) 95.CrossRefGoogle Scholar
  4. /4/.
    C.H. Pennington, D.J. Durand, D.B. Zax, C.P. Slichter, J.P. Rice and D.M. Ginsberg, Phys. Rev. B37 (1988) 7944.CrossRefADSGoogle Scholar
  5. /5/.
    R.E. Walstedt, W.W. Warren, R.F. Bell, G.F. Brennert, G.P. Espinosa, J.P. Remeika, R.J. Cava and E.A. Rietmann, Phys. Rev. B36 (1987) 5727.CrossRefADSGoogle Scholar
  6. /6/.
    M. Takigawa, P.C. Hammel, R.H. Heffner, Z. Fisk, K.C. Ott and J.D. Thompson, Phys. Rev. Lett. (submitted).Google Scholar
  7. /7/.
    C. Coretsopoulos, H.C. Lee, E. Ramli, L. Reven, T.B. Rauchfuss and E. Oldfield, Phys. Rev. B39 (1989) 781.CrossRefADSGoogle Scholar
  8. /8/.
    H. Yasuoka, T. Shimizu, Y. Ueda and K. Kosuge, J. Phys. Soc. Jpn. 57 (1988) 2659.Google Scholar
  9. /9/.
    C. Ambrosch-Draxl, P. Blaha and K. Schwarz, J. Phys.: Cond. Matter 1 (1989) 4491.CrossRefADSGoogle Scholar
  10. /10/.
    M. Weinert, J. Math. Phys 22 (1981) 2433.CrossRefADSMathSciNetGoogle Scholar
  11. /11/.
    P. Blaha, K. Schwarz and P. Herzig, Phys. Rev. Lett. 54 (1985) 1192.CrossRefADSGoogle Scholar
  12. /12/.
    P. Blaha, K. Schwarz and P.H. Dederichs, Phys. Rev. B37 (1988) 2792.CrossRefADSGoogle Scholar
  13. /13/.
    P. Blaha, P. Sorantin, C. Ambrosch and K. Schwarz, Hyp. Int. (in print).Google Scholar
  14. /14/.
    P. Blaha and K. Schwarz, Hyp. Int. (in print).Google Scholar
  15. /15/.
    W. Weber, Festkörperprobleme 28 (1988) 141.Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1990

Authors and Affiliations

  • C. Ambrosch-Draxl
    • 1
  • P. Blaha
    • 1
  • K. Schwarz
    • 1
  1. 1.Inst. f. Technische ElektrochemieTU WienViennaAustria

Personalised recommendations