Skip to main content
Log in

Time and biosequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In this paper we discuss and demonstrate the importance of several factors relative to the relationship between time and evolution of biosequences. In both quantitative and qualitative measurements of the genetic distances, the compositional constraints of the nucleotide sequences play a very important role. We demonstrate that when homologous sequences significantly differ in base composition we get erratic branching order and/or wrong evaluation of the evolutionary rates.

We must consider that every gene may have a different evolutionary dynamic along its sequence, generally linked to its functional constraints; this too can seriously affect its clocklike behavior. We report some cases showing how these factors can affect the quantitative measurements of the genetic distances of biosequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Attimonelli M, Lanave C, Sbisà E, Preparata G, Saccone C (1985) Multisequence comparisons in protein coding genes: search for functional constraints. Cell Biophys 7:239–250

    CAS  PubMed  Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cuny G, Meunier-Rovital M, Rodier F (1985) The mosaic genome of warmblooded vertebrates. Science 228:953–958

    CAS  PubMed  Google Scholar 

  • Bishop MJ, Friday AE (1985) Evolutionary trees from nucleic acid and protein sequences. Proc R Soc Lond 226:271–302

    Article  CAS  Google Scholar 

  • Dayhoff MO, Lippincott ER, Erck RV (1964) Thermodynamic equilibria in prebiological atmospheres. Science 146:1461–1464

    CAS  PubMed  Google Scholar 

  • Eck RV, Dayhoff MO (1966) Atlas of the protein sequence and structure. National Biomedical Research Foundation, Silver Spring, MD

    Google Scholar 

  • Felsenstein J (1990) Phylip manual version 3.3. University Hebarium, University of California Berkeley

  • Freese E (1962) On the evolution of the base composition of DNA. J Theor Biol 3:82–101

    CAS  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    CAS  PubMed  Google Scholar 

  • Grantham R (1980) Working of the genetic code. Trends Biochem Sci 5:327–331

    Article  CAS  Google Scholar 

  • Holmes EC, Pesole G, Saccone C (1989) Stochastic models of molecular evolution and the estimation of phylogeny and rates of nucleotide substitution in the hominoid primates. J Human Evol 18:775–794

    Article  Google Scholar 

  • Howell N (1989) Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J Mol Evol 29:157–169

    Article  CAS  PubMed  Google Scholar 

  • Irwin DM, Konecker TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144

    CAS  PubMed  Google Scholar 

  • Lake JA (1987) A rate-independent technique for analysis of nucleic sequences:evolutionary parsimony. Mol Biol Evol 4:167–91

    CAS  PubMed  Google Scholar 

  • Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93

    Article  CAS  PubMed  Google Scholar 

  • Li WH, Wu C, Luo C (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–74

    PubMed  Google Scholar 

  • Long M, Gillepspie JH (1991) Codon usage divergence of homologous vertebrate genes and codon usage clock. J Mol Evol 32:6–15

    Article  CAS  PubMed  Google Scholar 

  • Molecular Evolution: computer analysis of protein and nucleic acid sequences (various authors) (1990) Doolittle RF (ed) Methods Enzymol 183 pp 1–690

  • Pesole G, Bozzetti MP, Lanave C, Preparata G, Saccone C (1991a) Glutamine synthetase gene evolution: a good molecular clock. Proc Natl Acad Sci USA 88:522–526

    CAS  PubMed  Google Scholar 

  • Pesole G, Sbisà E, Mignotte F, Saccone C (1991b) The branching order of mammals: pylogenetic trees inferred from nuclear and mitochondrial molecular data. J Mol Evol 33:537–542

    Article  CAS  PubMed  Google Scholar 

  • Pesole G, Attimonelli M, Preparata G, Saccone C (1992a) A statistical method for detecting regions with different evolutionary dynamics in multialigned sequences. Mol Phyl Evol 1:91–96

    Article  CAS  Google Scholar 

  • Pesole G, Sbisà E, Preparata G, Saccone C (1992b) The evolution of the mitochondrial D-loop region and the origin of modern man. Mol Biol Evol 9:4587–598

    Google Scholar 

  • Preparata G, Saccone C (1987) A simple quantitative model of the molecular clock. J Mol Evol 26:7–15

    Article  CAS  PubMed  Google Scholar 

  • Saccone C, Preparata G, Lanave C (1987) Chance, stochasticity and evolution: the Markov Clock. In: Quagliariello E, Bernardi G, Ullmann A (eds) Enzyme adaptation to natural philosophy: heritage from Jacques Monod. Elsevier Science Publishers BV (Biomedical Division) pp 159–172

  • Saccone C, Lanave C, Pesole G, Preparata G (1990) Influence of base composition on quantitative estimates of gene evolution. Methods Enzymol 183:570–583

    Article  CAS  PubMed  Google Scholar 

  • Saccone C, Pesole G, Sbisà E (1991) The main regulatory region of the mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol 33:83–91

    Article  CAS  PubMed  Google Scholar 

  • Stringer CB (1990) The emergence of modern humans. SCI AM 243(6):98–104

    Article  Google Scholar 

  • Sueoka N (1962) On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci 48:582–592

    CAS  PubMed  Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci 85:2653–2657

    CAS  PubMed  Google Scholar 

  • Williams PL, Fitch WM (1990) Phylogeny determination using dynamically weighted parsimony method. Methods Enzymol 183:615–626

    CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution and genetic heterogene In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, p 189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saccone, C., Lanave, C. & Pesole, G. Time and biosequences. J Mol Evol 37, 154–159 (1993). https://doi.org/10.1007/BF02407350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02407350

Key words

Navigation