Skip to main content
Log in

Evolution of protein complexity: The blue copper-containing oxidases and related proteins

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The blue copper proteins and their relatives have been compared by sequence alignments, by comparison of three-dimensional structures, and by construction of phylogenetic trees. The group contains proteins varying in size from 100 residues to over 2,300 residues in a single chain, containing from zero to nine copper atoms, and with a broad variation in function ranging from electron carrier proteins and oxidases to the blood coagulation factors V and VIII. Difference matrices show the sequence difference to be over 90% for many pairs in the group, yet alignment scores and other evidence suggest that they all evolved from a common ancestor. We have attempted to delineate how this evolution took place and in particular to define the mechanisms by which these proteins acquired an ever-increasing complexity in structure and function. We find evidence for six such mechanisms in this group of proteins: domain enlargement, in which a single domain increases in size from about 100 residues up to 210; domain duplication, which allows for a size increase from about 170 to about 1,000 residues; segment elongation, in which a small segment undergoes multiple successive duplications that can increase the chain size 50-fold; domain recruitment, in which a domain coded elsewhere in the genome is added on to the peptide chain; subunit formation, to form multisubunit proteins; and glycosylation, which in some cases doubles the size of the protein molecule. Size increase allows for the evolution of new catalytic properties, in particular the oxidase function, and for the formation of coagulation factors with multiple interaction sites and regulatory properties. The blood coagulation system is examined as an example in which a system of interacting proteins evolved by successive duplications of larger parts of the genome. The evolution of size, functionality, and diversity is compared with the general question of increase in size and complexity in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adman ET, Stenkamp RE, Sieker LC, Jensen LH (1978) A crystallographic model for azurin at 3 Å resolution. J Mol Biol 123:35–47

    Article  PubMed  CAS  Google Scholar 

  • Adman ET, Turley S, Bramson R, Petratos K, Banner D, Tsernoglou D, Beppu T, Watanabe H (1989) A 2.0-Å structure of the blue copper protein (cupredoxin) fromAlcaligenes faecalis S-6. J Biol Chem 264:87–99

    PubMed  CAS  Google Scholar 

  • Aitken A (1975) Prokaryote-eukaryote relationships and the amino acid sequence of plastocyanin fromAnabaena variabilis. Biochem J 149:675–683

    PubMed  CAS  Google Scholar 

  • Ambler RP (1971) Sequence data acquisition for the study of phylogeny. In: Previero A, Pechere J-F, Coletti-Previero M-A (eds) Recent developments in the chemical study of protein structures. INSERM, Paris, pp 289–305

    Google Scholar 

  • Ambler RP, Tobari J (1985) The primary structures ofPseudomonas AM1 amicyanin and pseudoazurin. Two new sequence classes of blue copper proteins. Biochem J 232:451–457

    PubMed  CAS  Google Scholar 

  • Astolfi P, Kidd KK, Cavalli-Sforza LL (1981) A comparison of methods for reconstructing evolutionary trees. Syst Zool 30:156–169

    Article  Google Scholar 

  • Barker WC, Dayhoff MO (1979) Evolutionary trees from protein sequences: probability of correct reconstruction of fourbranch topologies. Biophysical J 25:158a

    Google Scholar 

  • Barker WC, Hunt LT, George DG (1988) Homology and similarity in amino acid sequences: detection, analysis, and interpretation. In: Silverman BD (ed) Computer simulation of carcinogenic processes. CRC Press, Boca Raton, FL, pp 1–36

    Google Scholar 

  • Barker WC, George DG, Hunt LT (1990) Protein sequence database. In: Doolittle RF (ed) Methods in enzymology, Vol 183. Academic Press, New York, pp. 31–49.

    Google Scholar 

  • Bergman C, Gandvik E-K, Nyman PO, Strid L (1977) The amino acid sequence of stellacyanin from the lacquer tree. Biochem Biophys Res Commun 77:1052–1059

    Article  CAS  Google Scholar 

  • Bergman C (1980) Amino acid sequences studies of two small blue proteins: stellacyanin and umecyanin. PhD thesis (Department of Biochemistry and Biophysics), University of Göteborg, Sweden

    Google Scholar 

  • Blanken RL, Klotz LC, Hinnebusch AG (1982) Computer comparison of new and existing criteria for constructing evolutionary trees from sequence data. J Mol Evol 19:9–19

    Article  PubMed  CAS  Google Scholar 

  • Bonner JT (1988) The evolution of complexity by means of natural selection. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Chou PY, Fasman GD (1978a) Empirical predictions of protein conformation. Annu Rev Biochem 47:251–276

    Article  PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1978b) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol 47:45–148

    PubMed  CAS  Google Scholar 

  • Cole ST, Grundstrom T, Jaurin B, Robinson JJ, Weiner JH (1982) Location and nucleotide sequence of frdB, the gene coding for the iron-sulphur protein subunit of the fumarate reductase ofEscherichia coli. Eur J Biochem 126:211–216

    Article  PubMed  CAS  Google Scholar 

  • Darlison MG, Guest JR (1984) Nucleotide sequence encoding the iron-sulphur protein subunit of the succinate dehydrogenase ofEscherichia coli. Biochem J 223:507–517

    PubMed  CAS  Google Scholar 

  • Dayhoff MO, Barker WC, Hunt LT (1983) Establishing homologies in protein sequences. In: Hirs CHW, Timasheff SN (eds) Methods in enzymology, vol 91. Academic Press, New York, pp 524–545

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284

    PubMed  CAS  Google Scholar 

  • George DG, Hunt LT, Barker WC (1988) The Protein Identification Resource (PIR) software. In: Lesk AM (ed) Computational molecular biology: sources and methods for sequence analysis. Oxford University Press, Oxford, pp 100–115

    Google Scholar 

  • George DG, Barker WC, Hunt LT (1990) Mutation data matrix and its uses. In: Doolittle RF (ed) Methods in enzymology, vol 183. Academic Press, New York, pp 333–351

    Google Scholar 

  • Germann UA, Müller G, Hunziker PE, Lerch K (1988) Characterization of two allelic forms ofNeurospora crassa laccase. Amino- and carboxyl-terminal processing of a precursor. J Biol Chem 263:885–896

    PubMed  CAS  Google Scholar 

  • Goodman M, Romero-Herrera AE, Dene H, Czelusniak J, Tashian RE (1982) Amino acid sequence evidence on the phylogeny of primates and other eutherians. In: Goodman M (ed) Macromolecular sequences in systematic and evolutionary biology. Plenum Press, New York, pp 115–191

    Google Scholar 

  • Guss JM, Freeman HC (1983) Structure of oxidized poplar plastocyanin at 1.6 Å resolution. J Mol Biol 169:521–563

    PubMed  CAS  Google Scholar 

  • Guss JM, Merritt EA, Phizackerley RP, Hedman B, Murata M, Hodgson KO, Freeman HC (1988) Phase determination by multiple-wavelength x-ray diffraction: crystal structure of a basic “blue” copper protein from cucumbers. Science 241:806–811

    PubMed  CAS  Google Scholar 

  • Han T-M, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science 257:232–235

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Siatou N (1991) On the maximum likelihood method in molecular phylogenetics. J Mol Evol 32:443–445

    Article  PubMed  CAS  Google Scholar 

  • Hedner U, Davie EW (1989) Introduction to hemostasis and the vitamin K-dependent coagulation factors. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic basis of inherited disease, ed 6, vol 2. McGraw-Hill, New York, pp 2107–2134

    Google Scholar 

  • Holm L, Saraste M, Wilkström M (1987) Structural models of the redox centres in cytochrome oxidase. EMBO J 6:2819–2823

    PubMed  CAS  Google Scholar 

  • Hormel S, Adman E, Walsh KA, Beppu T, Titani K (1986) The amino acid sequence of the blue copper protein ofAlcaligenes faecalis. FEBS Lett 197:301–304

    Article  PubMed  CAS  Google Scholar 

  • Hunt LT, George DG, Yeh L-SL (1985) Ragweed allergen Ra3: relationship to some type I copper-binding proteins. J Mol Evol 21:126–132

    Article  CAS  Google Scholar 

  • Jenny RJ, Pittman DD, Toole JJ, Kriz RW, Aldape RA, Hewick RM, Kaufman RJ, Mann KG (1987) Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci USA 84:4846–4850

    PubMed  CAS  Google Scholar 

  • Kane WH, Davie EW (1986) Cloning of a cDNA coding for human factor V, a blood coagulation factor homologous to factor VIII and ceruloplasmin. Proc Natl Acad Sci USA 83:6800–6804

    PubMed  CAS  Google Scholar 

  • Kane WH, Davie EW (1988) Blood coagulation factors V and VIII: structural and functional similarities and their relationship to hemorrhagic and thrombotic disorders. Blood 71:539–555

    PubMed  CAS  Google Scholar 

  • Kane WH, Ichinose A, Hagen FS, Davie EW (1987) Cloning of cDNAs coding for the heavy chain region and connecting region of human factor V, a blood coagulation factor with four types of internal repeats. Biochemistry 26:6508–6514

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M (1985) IDEAS. Integrated database and extended analysis system for nucleic acids and proteins. User manual. Laboratory of Mathematical Biology, NIH, Bethesda, MD

    Google Scholar 

  • Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256:622–627

    PubMed  CAS  Google Scholar 

  • Koschinsky ML, Funk WD, van Oost BA, MacGillivray RTA (1986) Complete cDNA sequence of human preceruloplasmin. Proc Natl Acad Sci USA 83:5086–5090

    PubMed  CAS  Google Scholar 

  • Kraulis PJ (1991) MolScript—a program to produce both detailed and schematic plots of protein structure. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  • Malkin R, Malmström BG (1970) The state and function of copper in biological systems. Adv Enzymol 33:177–243

    PubMed  CAS  Google Scholar 

  • Messerschmidt A, Rossi A, Ladenstein R, Huber R, Bolognesi M, Gatti G, Marchesini A, Petruzzelli R, Finazzi-Agró A (1989) X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands. J Mol Biol 206:513–529

    Article  PubMed  CAS  Google Scholar 

  • Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase, and ceruloplasmin. Modelling and structural relationships. Eur J Biochem 187:341–352

    Article  PubMed  CAS  Google Scholar 

  • Mondovi B, Avigliano L (1984) Ascorbate oxidase. In: Lontie R (ed) Copper proteins and copper enzymes, vol 3, CRC Press, Boca Raton, FL pp 101–118

    Google Scholar 

  • Murata M, Begg GS, Lambrou F, Leslie B, Simpson RJ, Freeman HC, Morgan FJ (1982) Amino acid sequence of a basic blue protein from cucumber seedlings. Proc Natl Acad Sci USA 79:6434–6437

    PubMed  CAS  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  PubMed  CAS  Google Scholar 

  • Norris GE, Anderson BF, Baker EN (1983) Structure of azurin fromAlcaligenes denitrificans at 2.5 Å resolution. J Mol Biol 165:501–521

    PubMed  CAS  Google Scholar 

  • Ohkawa J, Okada N, Shinmyo A, Takano M (1989) Primary structure of cucumber (Cucumis sativus) ascorbate oxidase deduced from cDNA sequence: homology with blue copper proteins and tissue-specific expression. Proc Natl Acad Sci USA 86:1239–1243

    PubMed  CAS  Google Scholar 

  • Omoto E, Tavassoli M (1990) Purification and partial characterization of ceruloplasmin receptors from rat liver endothelium. Arch Biochem Biophys 282:34–38

    Article  PubMed  CAS  Google Scholar 

  • Patthy L (1985) Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell 41:657–663

    Article  PubMed  CAS  Google Scholar 

  • Poole S, Firtel RA, Lamar E, Rowekamp W (1981) Sequence and expression of the discoidin I gene family inDictyostelium discoideum. J Mol Biol 153:273–289

    Article  PubMed  CAS  Google Scholar 

  • Reinhammar B (1984) Laccase. In: Lontie R (ed) Copper proteins and copper enzymes, vol 3, CRC Press, Boca Raton, FL, pp 1–35

    Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368

    PubMed  CAS  Google Scholar 

  • Rydén L (1982) Model of the active site in the blue oxidases based on the ceruloplasmin-plastocyanin homology. Proc Natl Acad Sci USA 79:6767–6771

    PubMed  Google Scholar 

  • Rydén L (1984a) Structure and evolution of the small blue proteins. In: Lontie R (ed) Copper proteins and copper enzymes, vol 1, CRC Press, Boca Raton, FL, pp 183–214

    Google Scholar 

  • Rydén L (1984b) Ceruloplasmin. In: Lontie R (ed) Copper proteins and copper enzymes, vol 3. CRC Press, Boca Raton, FL, pp 37–100

    Google Scholar 

  • Rydén L (1988) Evolution of blue copper proteins. In: King TP, Mason H (eds) Oxidases and related redox systems. Alan R Liss, New York, pp 349–366

    Google Scholar 

  • Rydén L, Lundgren J-O (1976) Homology relationships among the small blue proteins. Nature 261:344–346

    Article  PubMed  Google Scholar 

  • Rydén L, Lundgren J-O (1979) On the evolution of blue proteins. Biochimie 61:781–790

    PubMed  Google Scholar 

  • Rydén L, Lundgren J-O (1980) The relationship of the small blue proteins with the copper-containing oxidases. In: Peeters H (ed) Protides of the biological fluids, vol 28. Pergamon Press, Oxford, pp 87–90

    Google Scholar 

  • Saitou N, Imanishi T (1989) Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol Biol Evol 6:514–525

    CAS  Google Scholar 

  • Saloheimo M, Niku-Paavola M-L, Knowles JKC (1991) Isolation and structural analysis of the laccase gene from the lignindegrading fungusPhlebia radiata. J Gen Microbiol 137:1537–1544

    PubMed  CAS  Google Scholar 

  • Saraste M (1990) Structural features of cytochrome oxidase. Q Rev Biophys 23:331–366

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (1978) The evolution of the earliest cells. Sci Am 239:111–140

    Article  CAS  Google Scholar 

  • Sourdis J, Nei M (1988) Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol Biol Evol 5:298–311

    PubMed  CAS  Google Scholar 

  • Stubbs JD, Lekutis C, Singer KL, Bui A, Yuzuki D, Srinivasan U, Parry G (1990) cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc Natl Acad Sci USA 87:8417–8421

    PubMed  CAS  Google Scholar 

  • Takahashi N, Ortel TL, Putnam FW (1984) Single-chain structure of human ceruloplasmin: the complete amino acid sequence of the whole molecule. Proc Natl Acad Sci USA 81:390–394

    PubMed  CAS  Google Scholar 

  • Trackman PC, Pratt AM, Wolanski A, Tang S-S, Offner GD, Troxler RF, Kagan HM (1990) Cloning of rat aorta lysyl oxidase cDNA: complete codons and predicted amino acid sequence. Biochemistry 29:4863–4870

    Article  PubMed  CAS  Google Scholar 

  • Vehar GA, Keyt B, Eaton D, Rodriguez H, O'Brien DP, Rotblat F, Oppermann H, Keck R, Wood WI, Harkins RN, Tuddenham EGD, Lawn RM, Capon DJ (1984) Structure of human factor VIII. Nature 312:337–342

    Article  PubMed  CAS  Google Scholar 

  • Williams AF, Barclay AN (1988) The immunoglobulin superfamily: domains for cell surface recognition. Ann Rev Immunol 6:381–405

    CAS  Google Scholar 

  • Wood WI, Capon DJ, Simonsen CC, Eaton DL, Gitschier J, Keyt B, Seeburg PH, Smith DH, Hollingshead P, Wion KL, Delwart E, Tuddenham EGD, Vehar GA, Lawn RM (1984) Expression of active human factor VIII from recombinant DNA clones. Nature 312:330–337

    Article  PubMed  CAS  Google Scholar 

  • Young CL, Barker WC, Tomaselli CM, Dayhoff MO (1979) Serine proteases. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington, DC, pp 73–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rydén, L.G., Hunt, L.T. Evolution of protein complexity: The blue copper-containing oxidases and related proteins. J Mol Evol 36, 41–66 (1993). https://doi.org/10.1007/BF02407305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02407305

Key words

Navigation