Computational Mathematics and Modeling

, Volume 9, Issue 3, pp 244–252 | Cite as

Application of differential equations to synthesize a class of algorithms for numerical solution of a partial eigenvalue problem

  • S. V. Shil'man
  • A. B. Peiko
Article
  • 24 Downloads

Abstract

We synthesize a class of recursive algorithms in the formation of which essential use is made of the properties of a certain type of differential equation and the qualitative analysis of it. These algorithms admit generalization to the case of nonsymmetric matrices.

Keywords

Differential Equation Qualitative Analysis Mathematical Modeling Computational Mathematic Eigenvalue Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    O. A. Petrov and V. N. Fomin,Linear Filtering of Stochastic Processes [in Russian], Leningrad (1991).Google Scholar
  2. 2.
    T. P. Krasulina, “The method of stochastic approximation for determining the largest eigenvalue of the mathematical expectation of stochastic matrices,”Avtomat. Telemekh., No. 2, 50–57 (1970).MATHMathSciNetGoogle Scholar
  3. 3.
    A. P. Mikheev and S. V. Shil'man, “Teaching algorithms in the solution of degenerate problems of parameter estimation,”Avtomat. Telemekh., No. 11, 117–127 (1989).Google Scholar
  4. 4.
    D. K. Faddeev and V. N. Faddeeva,Computational Methods of Linear Algebra, W. H. Freeman, San Francisco (1963).Google Scholar
  5. 5.
    M. R. Hestenes and W. Karush, “A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix,”J. Res. Nat. Bur. Stand.,47, 45–61 (1951).MathSciNetGoogle Scholar
  6. 6.
    A. S. Nemirovskii and S. V. Shil'man, “A recursive method for statistical estimation of the eigenvalues and eigenvectors of matrices,”Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 6, 39–44 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • S. V. Shil'man
  • A. B. Peiko

There are no affiliations available

Personalised recommendations