Advertisement

Water, Air, and Soil Pollution

, Volume 99, Issue 1–4, pp 661–669 | Cite as

Use of a 6-steps microcosm for studying a wastewater discharge in a freshwater ecosystem: A multidisciplinary study

  • Montuelle B. 
  • Latour X. 
  • Volat B. 
  • Blafont M. 
Sediment/Organism Interactions

Abstract

An experimental microcosm has been designed for simulating and studying impacts of a wastewater treatment plant (WTP) discharge on a freshwater/sediment ecosystem. The study was focused on the changes in biodiversity of benthic populations, especially bacteria and oligochaetes. Effluents were discharged in the Saône river, near Lyon (France) from a small treatment plant which treated domestic raw water by an activated sludge process. Freshwater and sediments were sampled in the Saline river upstream of the discharge point and placed in microcosms. Following the WTP discharge, physicochemical parameters of the overlying water column and sediments exhibited only a slight change, as compared to a reference.

Characterization of the sediment bacterial populations was conducted with the Biolog and API systems. Strain identification and interpretation of data was difficult using thesetwo systems. Bacterial taxa in the sediments increased slightly below the WTP discharge. Grain negative strains dominated in the effluents, but G+ and G bacteria were balanced in the sediments.Pseudomonas sp. andBacillus sp., were the dominant strains. Invertebrate populations indicated an effect of the WTP discharge, with increasing of pollution resistant strains (Tubificidae) and disappearance of pollution intolerant strains such asLimnodrilus undekemianus andQuistadrilus multicoetosus.

Taken as a whole, biological parameters indicated an environmental changes despite only slight changes in the physicochemistry of water. This experimental microcosm has proven to be a useful tool for studying impact of wastewater discharge on benthic populations.

Keywords

Microcosm bacteria oligochaete wastewater treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AFNOR, 1979, Recueil de normes françaises Eaux; Méthodes d'essais, 342p.Google Scholar
  2. Amy P.S., Haldeman D.L., Ringelberg D., Hall D.H. & Russell C.:1992,Applied Environernental Microbiology,58, 10,3367–3373.Google Scholar
  3. Benoit D.A., Phipps G.L. & Ankley G.T.:1993,Water Research,27, 9, 1403–1412.CrossRefGoogle Scholar
  4. Bérard A., Volat B. & Montuelle B., 1995, Bacterial activity and its trophic role in a eutrophic pond,Arch. Hydrobiol.,134, 4, 499–513. Bianchi M. A.G. & Bianchi A.J.M.:1982,Microbial Ecology,8, 61–69.Google Scholar
  5. Bergey's manual of Systematic Bacteriology,: 1984, Vol. 1, 2, 3 & 4, Krieg,N.R. & Holt J.G., Williams & Wilkins, Baltimore, London, 2619p.Google Scholar
  6. Brioa N, 1996, Colloque “Seine Aval”, 8-9/02/96, Paris.Google Scholar
  7. Broberg A.: 1985,Hydrobiologia,120, 181–187.CrossRefGoogle Scholar
  8. Burton G.A. Jr.:1991,Environmental Toxicology and Chemistry,10, 1585–1627.Google Scholar
  9. Carson D.B., Saeger V.W. & Gledhill W.E.:1990,Aquatic Toxicology and risk assessment: thirteen volume, ASTM STP 1096,Landis W.G. & Van der Schalie W. Eds, pp48–59.Google Scholar
  10. Elliott E.T., Hunt H.W., Walter D.E. & Moore J.C.:1986, Proceedings of the IVthISME, (Eds F. Megusar & M. Gantar), pp. 472–480. Ljubljana.Google Scholar
  11. CEMAGREF: 1994, Report DRAEI 93196, Min. Environ.- Cemagref, 139p.Google Scholar
  12. Grothe D.R., Dickson K.L. & Reed-Judkins D.K.: 1996, SETAC Press, 350p.Google Scholar
  13. Garrie J., Vollat B., Nguyen D.K., Bray M., Migeon B. & Kosmala A.: 1996,Water Science and Technology,33, 6, 83–91.CrossRefGoogle Scholar
  14. Klinger J.M., Stowe R.P., Obenhuber D.C., Groves T.O., Mishra S.K. & Pierson D.L.: 1992,Applied Environemental Microbiology,58, 6, 2089–2092.Google Scholar
  15. Kroer N., Coffin R.B. (1992)Microbial Ecology,23, 143–157.Google Scholar
  16. Kroer N., Coffin R.B. & Jorgensen N.O.G.: 1994,Environmental and Toxicological Chemistry,13, 2, 247–257Google Scholar
  17. Lafont M.: 1989, Thèse de Doctorat d'Etat ès Sciences, Université LyonI, 311 p + annexes.Google Scholar
  18. Lafont M., Camus J.C. & Rosso A.:1996,Hydrobiologia,334, 147–155.CrossRefGoogle Scholar
  19. Maugharn J.T., Oviatt C.A.: 1993,Water Environment Research,65, 7, 879–889.Google Scholar
  20. Montuelle B., Volat B., 1993,Revue des Sciences de l'Eau,6, 251–268.Google Scholar
  21. Montuelle B., Volat B., Torio-Femandez M., Navarro E.: 1996,Water Research,30, 5, 1057–1064.CrossRefGoogle Scholar
  22. Peduzzi R., Demarta A. & Tonolla M.: 1992,Aquatic Sciences,54, 3/4, 331–337.CrossRefGoogle Scholar
  23. Percherancier H., Volat B. & Montuelle B.: 1996,Water Science and Technology,33, 6, 221–229.CrossRefGoogle Scholar
  24. Piersotte N., 1991, Report Univ. Namur (B) - Cemagref, 89 p.Google Scholar
  25. Pipke R., Wagner-Döbler I., Tommis K.H. & Dwyer D.F.: 1992,Applied and Environmental Microbiology,58, 4,1259–1265.Google Scholar
  26. Rebillard J. & Torre M.: 1993,Revue des Sciences de l'Eau,6, 153–174.Google Scholar
  27. Rosso A., Lafont M & Exinger A.: 1994,Water Science and Technology,29, 3, 241–248.Google Scholar
  28. Rosso A.: 1995, These Universitée Lyon I, 176p + annexes.Google Scholar
  29. Shaw J.L. & Kennedy J.H.:1996,Environmental Toxicology and Chemistry,15, 5, 605–607.CrossRefGoogle Scholar
  30. Spencer M. & Warren P.: 1996,Oikos,75, 419–430.Google Scholar
  31. US Environmental Protection Agency: 1991, EPA Report 600/4/-90-027, 4th Ed.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Montuelle B. 
    • 1
  • Latour X. 
    • 1
  • Volat B. 
    • 1
  • Blafont M. 
    • 2
  1. 1.EcoDynarnique des SédimentsCEMAGREF, LaboratoiresLyon, Cédex 09France
  2. 2.CEMAGREF, LaboratoiresDiagnose des Systémes AquatiquesLyon, Cédex 09France

Personalised recommendations