Water, Air, and Soil Pollution

, Volume 99, Issue 1–4, pp 523–531 | Cite as

Trophic status and lake sedimentation fluxes

  • G. Tartari
  • G. Biasci
Role of Sediments in Element Cycles


In limnological studies the measure of sedimentation fluxes of seston is neglected, in spite of the importance it can have in determining water quality, studying biogeochemical cycles, evaluating the distribution of chemical species, etc. often sedimentation is obtained only from mass balance models, not taking into account the fact that the uncertainty of determining inputs and outputs makes this evaluation from their difference rather unreliable; other factors of the balance, such as exchanges with the atmosphere, between water and sediments, are equally difficult to define. Though the direct measurement of sedimentation also presents some methodological and logistic difficulties, such as resuspension of material from the bottom, grazing, etc., this does not justify the very scarce attention paid to this kind of determination.

This paper reports the sedimentation fluxes of 39 lakes, in different parts of the world, having different limnological and trophic characteristics (0.4 < TP < 369 μg L−1; 0.5 < chlorophyll a <50 mg m−3). The fluxes of PM, C, N and P show a log-log relationship (r ≈ 0.6, p ≤ 0.05) with the common trophic variables (Secchi disk, total phosphorus, chlorophyll and primary production), independently of the morphometric characteristic of lakes. Hence sedimentation seems not to be an intrinsic property of the environment but is related to the trophic state of the system. The results achieved tend to confirm that the nature of sedimenting seston is generally autochthonous, even though the poor correlation between PM and the same trophic variables suggests that PM is more influenced by allochthonous material.

Key words

Sedimentation sediment traps nutrients elemental ratio lakes trophic state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, L.A., Tacconi, J.E. and Brezonik, P.L.: 1988,Verh. Internat. Verein Limnol. 23: 346–350.Google Scholar
  2. Bertoni, R., Calleri, C., De Marco, e Contesini, M.: 1986, In: Atti del 7° Congresso AIOL, Trieste. 145–154.Google Scholar
  3. Biasci, G., Renoldi, M., Tartari, G., Colombo, D. and Muntau, H.: 1992, In: Atti del V° Congresso Nazionale della Società Italiana di Ecologia. Milano. 535 – 540.Google Scholar
  4. Bloesch, J.: 1994,Hydrobiologia 284: 1–3.CrossRefGoogle Scholar
  5. Bloesch, J. and Burns, N. M.: 1980,Schweiz. Z. Hydrol. 42: 15–55.Google Scholar
  6. Bloesch, J. and Sturm, M.: 1986, In: P. G. Sly (Ed.),Sediment and water interactions, Springer-Verlag, New York. 481–490.Google Scholar
  7. Bloesch, J. and Uehlinger, U.: 1986,Limnol. Oceanogr. 31: 1094–1109.Google Scholar
  8. Bloesch, J. and Wehrli, B.: 1995,Eawag News 38: 10–12.Google Scholar
  9. Bloesch, J., Stadelmann, T. and Buehrer, H.: 1977,Limnol Oceanogr 22: 551–526.Google Scholar
  10. Brunskill, G.J.: 1969,Limnol. Oceonogr. 14: 830–847.Google Scholar
  11. Eadie, B.J., Chambers, R.L., Gardner, W.S. and Bell, G.L.: 1984,Great Lakes Res. 10: 307–321.Google Scholar
  12. Edmonson, W.T. and Lehman, T.: 1981,Limnol. Oceanogr. 26: 1–29.Google Scholar
  13. Evans, R. D. and Håkanson, L.: 1992,Hydrobiologia 235/236: 143–152.CrossRefGoogle Scholar
  14. Fuhs, G.W.: 1973,Limnol. Oceonogr. 18: 989–993.Google Scholar
  15. Fukushima, T., Aizaki, M. and Muraoka, K., 1989,Hydrobiologia 176/177: 279–295.CrossRefGoogle Scholar
  16. Gachter, R. and Bloesch, J.: 1985,Hydrobiologia 128: 193–200.CrossRefGoogle Scholar
  17. Galvez, J. A., Niell, F. X. and Lucena, J.: 1989,Arch Hydrobiol. Beth. 33: 9–18.Google Scholar
  18. Gandais, V. and Vernet. J-P.: 1988,Rapp. Comm. int. prot. eaux Léman contre pollut., Campagne 1987, 1988: 97–118.Google Scholar
  19. Goldman, J.C., McCarthy, J.J. and Peavey, D.G.: 1979,Nature 279: 210–215.CrossRefGoogle Scholar
  20. Håkanson, L.. 1994,Hydrobiologia 284: 19–43.CrossRefGoogle Scholar
  21. Hamilton-Taylor, J. and Wills, M.: 1984,Limnol. Oceanogr. 29: 695–710.Google Scholar
  22. Hecky, R. E., Campbell, P. and Hendzel, L. L.: 1993,Limnol. Oceanogr. 38: 709–724.CrossRefGoogle Scholar
  23. Hicks, R.E., Owen, C.J. and Aas, P.: 1994,Hydrobiologia 284: 79–91.CrossRefGoogle Scholar
  24. Kajak, Z. and Lawacz W., 1976, In: H. L. Golterman (ed.),Interaction between sediments and freshwater. Dr W. Junk Publ. 72–75.Google Scholar
  25. Kimmel, B. L. and Goldman, C. R.: 1977, In: H. L. Golterman (ed.),Interaction between sediments and freshwater. Dr W. Junk Pub]. 148–155.Google Scholar
  26. Kozerski, H. P.: 1994,Hydrobiologia 284: 93–101.CrossRefGoogle Scholar
  27. Jones, J.B.: 1976,J. Ecol. 64: 241–278.Google Scholar
  28. Lastein, E.: 1976,Oikos 27: 44–49.Google Scholar
  29. Lastein, E.: 1983,Oikos 40: 103–112.Google Scholar
  30. Pennington, W., 1974,J. Ecol. 62:215–251.Google Scholar
  31. Porcalova, P.: 1989,Arch. Hydrobiol. Beth. 33: 349–353.Google Scholar
  32. Premazzi, G. and G. Marengo: 1982,Hydrobiologia 92: 603–610.Google Scholar
  33. Premazzi, G. and Rossi, G.: 1984,Phosphorus cycle in a eutrophic subalpine lake. Final Rept. Fur 9116, JRC Ispra Establishment.Google Scholar
  34. Rathke, D.E., Bloesch, J., Burns, N.M. and Rosa, F.: 1981,Verh. Internat. Verein Limnol. 21: 383–388.Google Scholar
  35. Reckhow, K.H. and Chapra, S.C.: 1983,Engineering approaches for lake management. Vol. 1: Data analysis and empirical modeling. Butterworth Publ., Boston. 340 pp.Google Scholar
  36. Redfield, A. C.: 1934, On the proportions of organic derivates in sea water and their relation to the composition of plankton. In:James Johnston Memorial Volume, Liverpool University Press: 176–192.Google Scholar
  37. Rosa, F.: 1985,J. Great Lakes Res. 1985:13–25.CrossRefGoogle Scholar
  38. Serruya, C.: 1976, In: H. L. Golterman (ed.),Interaction between sediments and fresh water. Dr W. Junk Publ. 48–56.Google Scholar
  39. Sigg, L., Sturm, M. and Kistler, S.: 1987,Limnol. Oceanogr. 32: 112–130.Google Scholar
  40. Sokal, R. R. and Rohlf, F.J.: 1981,Biometry, 859 pp.Google Scholar
  41. Stabel, H.H.: 1984,Verh. Internat. Verein Limnol. 22: 964–969.Google Scholar
  42. Stabel, H.H.: 1985, In: W. Stumm (Ed.),Chemical processes in lakes, 143–167.Google Scholar
  43. Stabel, H.H.: 1988,Verh. Internat. Verein Limnol. 23: 700–706.Google Scholar
  44. Stumm, W.: 1992,Chemistry of the Solid-Water interface, J. Wiley & Sons, New York, 428 pp.Google Scholar
  45. Stumm, W. and Morgan, J.J.: 1982,Aquatic chemistry. J. Wiley & Sons, New York, 780 pp.Google Scholar
  46. Tartari, G., Patrolecco, L., Prina, M., Quattrin, B. and Biasci, G.: 1996, Proc. 7th Int. Symp. “The interactions between sediments and water”.Water, Air, Soil Pollut. submitted.Google Scholar
  47. Ulen, B.: 1978:Schweiz, Z. Hydrol. 40: 262–286.Google Scholar
  48. Vollenweider, R.A.: 1985,Arch. Hydrobiol. 105: 11–29.Google Scholar
  49. White, W.S. and Wetzel, R.G.: 1975,Verh. Internat. Verein Limnol. 19: 330–339.Google Scholar
  50. Weilenmann, U., O'Melia, C.R. and Stumm, W.: 1989,Limnol. Oceanogr. 34: 1–18.Google Scholar
  51. Wodka, M. C., Effler, S.W. and Driscoll, C.T.: 1985,Limnol. Oceanogr. 30: 833–843.CrossRefGoogle Scholar
  52. Wright, R.F., Matter, A, Schweingruber, M. and Siegenthaler, U.: 1980,Schweiz, Z. Hvdrol. 42: 101–126.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • G. Tartari
    • 1
  • G. Biasci
    • 1
  1. 1.CNR Istituto di Ricerca Sulle Acque, Località OcchiateMilanItaly

Personalised recommendations