Skip to main content

Neutral adaptation of the genetic code to double-strand coding

Summary

We lay new foundations to the hypothesis that the genetic code is adapted to evolutionary retention of information in the antisense strands of natural DNA/RNA sequences. In particular, we show that the genetic code exhibits, beyond the neutral replacement patterns of amino acid substitutions, optimal properties by favoring simultaneous evolution of proteins encoded in DNA/RNA sense-antisense strands. This is borne out in the sense-antisense transformations of the codons of every amino acid which target amino acids physicochemically similar to each other. Moreover, silent mutations in the sense strand generate conservative ones in its antisense counterpart and vice versa. Coevolution of proteins coded by complementary strands is shown to be a definite possibility, a result which does not depend on any physical interaction between the coevolving proteins. Likewise, the degree to which the present genetic code is dedicated to evolutionary sense-antisense tolerance is demonstrated by comparison with many randomized codes. Double-strand coding is quantified from an information-theoretical point of view.

This is a preview of subscription content, access via your institution.

References

  • Adelman JP, Bond CT, Douglas J, Herbert E (1987) Two mammalian genes transcribed from opposite strands of the same DNA locus. Science 235:1514–1517

    CAS  PubMed  Google Scholar 

  • Alff-Steinberger C (1969) The genetic code and error transmission. Proc Natl Acad Sci USA 64:584–591

    CAS  PubMed  Google Scholar 

  • Alff-Steinberger C (1987) Codon usage inHomo sapiens: Evidence for a coding pattern on the non-coding strand and evolutionary implications of dinucleotide discrimination. J Theor Biol 124:89–95

    CAS  PubMed  Google Scholar 

  • Altman S (1990) Enzymatic cleavage of RNA by RNA (Nobel lecture). Angew Chem Int Ed Engl 29:749–758

    Article  Google Scholar 

  • Ash R (1965) Information theory. Interscience Publishers, John Wiley & Sons, New York

    Google Scholar 

  • Blalock JE, Smith EM (1984) Hydropathic anti-complementary of amino acids based on the genetic code. Biochem Biophys Res Commun 121:203–207

    Article  CAS  PubMed  Google Scholar 

  • Blalock JE (1990) Complementary of peptides specified by “sense” and “antisense” strands of DNA. Trends Biotechnol 8:140–144

    Article  CAS  PubMed  Google Scholar 

  • Borstnik B, Hofacker GL (1985) Functional aspects of the neutral patterns in protein evolution. In: Clementi E, Corongiu G, Sarma MH, Sarma RH (eds) Structure and motion: membranes, nucleic acids and proteins. Adenine Press, Guilderland, NY, pp 277–291

    Google Scholar 

  • Borstnik B, Pumpernik D, Hofacker GL (1987) Point mutations as an optimal search process in biological evolution. J Theor Biol 125:249–268

    CAS  PubMed  Google Scholar 

  • Bost KL, Smith, Blalock JE (1985) Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. Proc Natl Acad Sci USA 82:1372–1375

    CAS  PubMed  Google Scholar 

  • Brentani RR (1988) Biological implications of complementary hydropathy of amino acids. J Theor Biol 135:495–499

    CAS  PubMed  Google Scholar 

  • Brentani RR (1990) Complementary hydropathy and the evolution of interacting polypeptides. J Mol Evol 31:239–243

    Article  CAS  Google Scholar 

  • Cech TR (1990) Self-splicing and enzymatic activity of an intervening sequence RNA fromTetrahymena (Nobel lecture). Angew Chem Int Ed Engl 29:759–768

    Article  Google Scholar 

  • Coutelle R, Hofacker GL, Levine RD (1979) Evolutionary changes in protein composition—evidence for an optimal strategy. J Mol Evol 13:57–72

    Article  CAS  PubMed  Google Scholar 

  • Crick FHC (1966) Codon-anticodon pairing: The wobble hypothesis. J Mol Biol 19:548–555

    Article  CAS  PubMed  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  CAS  PubMed  Google Scholar 

  • Dayhoff MO (ed) (1978) Atlas of protein sequence and structure, vol 5 Suppl 3. National Biomedical Research Foundation, Washington, DC

    Google Scholar 

  • Di Giulio M (1989) The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol 29:288–293

    Article  PubMed  Google Scholar 

  • Dufton MJ (1983) The significance of redundancy in the genetic code. J Theor Biol 102:521–526

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Schuster P (1979a) The hypercycle: A principle of natural self-organization. Part A. Emergency of the hypercycle. Springer-Verlag, Heidelberg, pp. 1–24

    Google Scholar 

  • Eigen M, Schuster P (1979b) The hypercycle: A principle of natural self-organization. Part C. The realistic hypercycle. Springer-Verlag, Heidelberg, pp 60–88

    Google Scholar 

  • Epstein CJ (1966) Role of the amino-acid “code” and of selection for conformation in the evolution of proteins. Nature 210:25–28

    CAS  PubMed  Google Scholar 

  • Fitch WM, Upper K (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harbor Symp Quant Biol LII:759–767

    Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Goldberg AL, Wittes RE (1966) Genetic code: Aspects of organization. Science 153:420–424

    CAS  PubMed  Google Scholar 

  • Goldgaber D (1991) Anticipating the anti-prion protein? Nature 351:106

    Article  CAS  PubMed  Google Scholar 

  • Hewinson RG, Lowings JP, Dawson MD, Woodward MJ (1991) Anti-prions and other agents. Nature 352:291

    Article  Google Scholar 

  • Jukes TH (1981) Amino acid codes in mitochondria as possible clues to primitive codes. J Mol Evol 18:15–17

    Article  CAS  PubMed  Google Scholar 

  • Jukes TH (1983) Evolution of the amino acid code. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer Associates, Sunderland, MA, pp 191–207

    Google Scholar 

  • Jukes TH, Kimura M (1984) Evolutionary constraints and the neutral theory. J Mol Evol 21:90–92

    Article  CAS  PubMed  Google Scholar 

  • Jukes TH (1990) Genetic code 1990. Outlook. Experientia 46:1149–1157

    CAS  Google Scholar 

  • Jungck JR (1978) The genetic code as a periodic table. J Mol Evol 11:211–224

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer Associates, Sunderland, MA, pp 208–233

    Google Scholar 

  • King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798

    CAS  PubMed  Google Scholar 

  • Lacey JC, Mullins DW (1985) Genetic coding catalysis. J Theor Biol 115:595–601

    CAS  PubMed  Google Scholar 

  • Lazar MA, Hodin RA, Darling DS, Chin WW (1989) A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the ratc-erbAα transcriptional unit. Mol Cell Biol 9:1128–1136

    CAS  PubMed  Google Scholar 

  • Lewin B (1990) Genes IV. Oxford University Press, New York, and Cell Press, Cambridge, MA, 331 pp

  • Miyajima N, Horiuchi R, Shibuya Y, Fukushige S, Matsubara K, Toyoshima K, Yamamoto T (1989) TwoerbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell 57:31–39

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (1989) The origin of polynucleotide-directed protein synthesis. J Mol Evol 29:465–474

    CAS  PubMed  Google Scholar 

  • Osawa S, Jukes TH (1988) Evolution of the genetic code as affected by anticodon content. Trends Genet 4:191–198

    Article  CAS  PubMed  Google Scholar 

  • Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28:271–278

    Article  CAS  PubMed  Google Scholar 

  • Reanney DC (1987) Genetic error and genome design. Cold Spring Harbor Symp Quant Biol LII:751–757

    Google Scholar 

  • Smith TF, Waterman MS (1980) Protein constraints induced by multiframe encoding. Math Biosci 49:17–26

    Article  CAS  Google Scholar 

  • Wada K, Aota S, Tsuchiya R, Ishibashi F, Gojobori T, Ikemura T (1990) Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res 18:2367–2403

    CAS  PubMed  Google Scholar 

  • Weiner AM, Maizels N (1987) tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: Implications for the origin of protein synthesis. Proc Natl Acad Sci USA 84:7383–7387

    CAS  PubMed  Google Scholar 

  • Woese CR (1965) Order in the genetic code. Proc Natl Acad Sci USA 54:71–75

    CAS  PubMed  Google Scholar 

  • Woese CR (1973) Evolution of the genetic code. Naturwissenschaften 60:447–459

    Article  CAS  PubMed  Google Scholar 

  • Zull JE, Smith SK (1990) Is genetic code redundancy related to retention of structural information in both DNA strands? Trends Biochem Sci 15:257–261

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konecny, J., Eckert, M., Schöniger, M. et al. Neutral adaptation of the genetic code to double-strand coding. J Mol Evol 36, 407–416 (1993). https://doi.org/10.1007/BF02406718

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02406718

Key words

  • Genetic code
  • Sense-antisense coding
  • Neutral adaptation
  • Information content