Advertisement

Water, Air, and Soil Pollution

, Volume 95, Issue 1–4, pp 337–351 | Cite as

Experimental investigation of transport of strongly retained species by soil columns

  • Marco Petrangeli Papini
  • Marco Majone
Article

Abstract

Column experiments have been extensively used in transport studies of major cations but few investigations are available on migration through soils of strongly retained species that are environmentally relevant (like heavy metals). By presenting some selected experiments (lead and proton step-breakthrough tests in different conditions), this study shows that the soil-column technique is also applicable in the case of species which exhibit very large retention factors. The use of very small soil columns (about 0.4 mL of pore volumes) combined with relatively high flow rates (0.1–0.3 mL min−1 ) allows to observe the entire breakthrough curve (adsorption and desorption front up to 5000 pore volumes) in reasonable experimental time, in reproducible conditions and without experimental drawbacks. In the adopted experimental conditions no kinetic effects, related to diffuse transport and sorption reaction were recognized; moreover, Peclet number was higher than 60. Consequently, it was possible to calculate the equilibrium isotherms from the diffuse fronts of the breakthrough. Knowledge that can be derived, concerning the reversibility of the adsorption process, the influence of complexation on the adsorption, the kinetics of complex formation, and the effect of dissolution on proton transport, is also discussed.

Key words

transport soil columns breakthrough curves lead proton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amoozegar-Fard, A., Fuller, W. H. and Warrik, A. W.: 1984,J. Environ. Qual. 13(2), 290.CrossRefGoogle Scholar
  2. Borkovec, M., Buchter, B., Sticher, H., Behra, P. and Sardin, M.: 1991,Chimie 45, 221.Google Scholar
  3. Brownawell, B. J., Hua Chen, Collier, J. M. and Westall, J. C.: 1990,Environ. Sci. Technol. 24, 1234.CrossRefGoogle Scholar
  4. Bruggenwert, M. G. M., Hiemstra, T. and Bolt, G. H.: 1991,Soil Acidity, Ulrich, B. and Sumner, M. E. (eds.), p. 8.Google Scholar
  5. Burgisser, C. S., Cernik, M., Borkovec, M. and Sticher H.: 1993,Environ. Sci. Technol. 27, 5, 943.Google Scholar
  6. Burgisser, C. S., Scheidegger, A. M., Borkovec, M. and Sticher, H.: 1994,Lungmuir 10, 855.CrossRefGoogle Scholar
  7. Copenhaver, S. A., Krishnaswami, S., Turekian, K. K., Epler, N. and Cochran, J. K.: 1993,Geochimica et Cosmochimica Acta 57, 597.CrossRefGoogle Scholar
  8. Doner, H. E.: 1978,Soil Sci. Soc. Am. 142, 882.CrossRefGoogle Scholar
  9. Dudley, L. M., McLean, J. E., Furst, T. H. and Jurinak, J. J.: 1991,Soil Science 151(2), 121.CrossRefGoogle Scholar
  10. Dunnivant, F. M., Jardine, P. M., Taylor, D. L. and McCarthy, J. F.: 1992,Environ. Sci. Technol. 26, 360.CrossRefGoogle Scholar
  11. Griffioen, J., Appelo, C. A. J. and van Veldhuizen, M.: 1992,Soil Sci. Soc. Am. J. 56, 1429.CrossRefGoogle Scholar
  12. Grolimund, D., Borkovec, M., Federer, P. and Sticher, H.: 1995,Environ. Sci. Technol. 29, 2317.Google Scholar
  13. Gschwend, P. M. and Shian-Chee Wu.: 1985,Environ. Sci. Technol. 19, 90.CrossRefGoogle Scholar
  14. Hinz, C. and Selim, H. M.: 1994,Soil Sci. Soc. Am. J. 58, 1316.CrossRefGoogle Scholar
  15. Majone, M., Petrangeli Papini, M. and Rolle, E.: mar–apr. 1993,Ingegneria Sanitaria, 59.Google Scholar
  16. Majone, M., Petrangeli Papini, M. and Rolle, E.: 1996,Environmental Technology 17, 587.CrossRefGoogle Scholar
  17. Miller, D. M., Summer, M. E. and Miller, W. P.: 1989,Soil Sci. Soc. Am. J. 53, 373.CrossRefGoogle Scholar
  18. MINTEQA2/PRODEFA2,A Geochernical Assessment Model for Environmental Systems: version 3.0 EPA/600/3-91/021, 1991.Google Scholar
  19. Roy, W. R.: 1993,Migration and Fate of Pollutants in Soils and Subsoils, Petruzzelli, D. and Helfferich, F. G. (eds.), NATO ASI Series. Series G: Ecological Sciences. Vol. 32, p. 169.Google Scholar
  20. Roy, W. R., Krapac, I. G., Chou, S.F. J. and Griffin, R. A.: 1991,Batch-Type Procedures for Estimating Soil Adsorption of Chemicals, Technical Resource Document EPA/530-SW-87-006-F.Google Scholar
  21. Scheidegger, A. M., Burgisser, A. S., Borkovec, M., Sticher, H., Meeussen, J. C. L. and Van Riemsdijk, W. H.: 1994,Water Resources Research 30(11), 2937.CrossRefGoogle Scholar
  22. Schwarzenbach, R. P. and Westall, J.: 1981,Environ. Sci. Technol. 15(11), 1360.CrossRefGoogle Scholar
  23. Schweich, D. and Sardin, M.: 1981,J. Hydrol. 50, 1.CrossRefGoogle Scholar
  24. Selim, H. M., Amacher, M. C. and Iskandar, I. K.: 1989,Soil Sci. Soc. Am. J. 53, 996.CrossRefGoogle Scholar
  25. Selim, H. M., Buchter, B., Hinz, C. and Ma, L.: 1992,Soil Sci. Soc. Am. J. 56, 1004.CrossRefGoogle Scholar
  26. Sparks, D. L. and Rechcigl, J. E.: 1982,Soil Sci. Soc. Am. J. 46, 875.CrossRefGoogle Scholar
  27. Villermaux, J.: 1981,Percolation Processes, Rodrigues, A. E. and Tondeur, D. (eds.), Sijthoff: Amsterdam, p. 83.Google Scholar
  28. Voice, T. C. and Weber W. J., Jr.: 1985,Environ. Sci. Technol. 19, 789.CrossRefGoogle Scholar
  29. Wagner, J., Hua Chen, Brownawell, B. J. and Westall, J. C.: 1994,Environ. Sci. Technol. 28, 231.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Marco Petrangeli Papini
    • 1
  • Marco Majone
    • 1
  1. 1.Department of Chemistry P. le Aldo MoroUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations