Water, Air, and Soil Pollution

, Volume 94, Issue 3–4, pp 401–416 | Cite as

Impact of high aluminium loading on a small catchment area (thuringia slate mining area) —geochemical transformations and hydrological transport

  • Stefan Peiffer
  • Carl Beierkuhnlein
  • Alexandra Sandhage-Hofmann
  • Martin Kaupenjohann
  • Silke Bär


A field study was performed on the effects of acid mine leachate from slate mine tailings seeping into a small river passing through the tailings. Before entering the tailings the river water has high alkalinity which neutralizes acidity upon mixing with leachate within the tailings. Donwstreams of the tailings the pH of the river water ranges about pH = 8, the water contains high concentrations of sulfate (≈1500 μmol/1 and particulate bound aluminium (≈80 μmol/I), but low concentrations of dissolved aluminium (≈3 μmol/1). It is therefore assumed that AI(OH)3 colloids are precipitated during the neutralisation process and transported out of the tailings. The concentration of particulate bound aluminium along the river shows a strong correlation with the concentration of sulfate, which indicates that particulate bound aluminium is conservative. It therefore seems that under dry weather conditions (under most of the sampling was performed) no chemical retention mechanism exists which confines the distribution of aluminium to a restricted part of the catchment area. In contrast, the white river sediment is rich in both aluminium and sulfate, which suggests the temporary formation of aluminium hydroxosulfate minerals. Favorable (i.e. acidic) conditions may prevail at high discharges where the acidity accumulated in the tailings is flushed into the river with its subsequent acidification.

Key words

acid mine drainage aluminium river sediments mixing behaviour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer, J., Lehmann, R. and Hamm, A.: 1988,pH-Wert- Veränderungen an ungepufferten Seen and Fließgewässern durch soure Deposition and ökologische] Aspekte der Gewässerversauerung, in: Wasserforschung, Bayerische Landesanstalt für (eds.), Gewässerversauerung im nord-and nordostbayerischen Grundgebirge. München, 1-250.Google Scholar
  2. Beierkuhnlein, C., Kaupenjohann, M., Sandhage-Hofmann, A. and Peiffer, S.: 1995, ‘Impact of High ] Aluminium Loadings on a Small Catchment Area in North-East Thuringia as Affected by Acid Mine Drainag 11. Phytosociological Inventory,Water Air, and Soil Pollut., in prep.Google Scholar
  3. Bencala, K. E., McKnight, D. M. and Zellweger, G. W.: 1987, ‘Evaluation of Natural Tracers in an Acidic and Metal-rich Stream’,Water Res. Res. 23, 827.Google Scholar
  4. Borek, S. L.: 1994, ‘Effect of Humidity on Pyrite Oxidation’, in: Alpers, C. N. and Blowes, D. W. (eds.),Environmental Geochemistry of Sulfide Oxidation. Vol. 550, ACS Symposium Series/Washington, 31–44.Google Scholar
  5. Caruccio, F. T.: 1973, ‘Estimating the Acid Potential of Coal Mine Refuse’, in: Chadwick, M. J. and Goodman, G. T. (eds.),The Ecology of Resource Degradation and Renewal, Blackwell, Oxford, 197–205.Google Scholar
  6. Filipek, L. H., Nordstrom, D. K. and Fichlin, W. H.: 1987, ‘Interaction of Acid Mine Drainage with Waters and Sediments of West Squaw Creek in the West Shasta Mining District’, California,Environ. Sci. Technol. 21, 388.CrossRefGoogle Scholar
  7. Herrmann, R. and Baumgartner, I.: 1992, ‘Aluminium Species Distribution during Mixing of Acid Coal and Slate Mine Drainage with Neutral Stream Waters’,Geol. Rundschau 81, 759.CrossRefGoogle Scholar
  8. Hermann, R., Klemm, K. and Tacken, E.: 1989, ‘Behaviour of Aluminium Species during Snowmelt, both Downstream and after Mixing with Nonacidic Water’,Aqua Fennica 19, 87.Google Scholar
  9. Kimball, B. A., Broshears, R. E., Bencala, K. E. and McKnight, D. M.: 1994, ‘Coupling of Hydrological Transport and Chemical Reactions in a Stream Affected by Acid Mine Drainage’,Environ. Sci. Technol. 28, 2065.CrossRefGoogle Scholar
  10. Liang. L. and Morgan, J. J.: 1990, ‘Chemical Aspects of Iron Oxide Coagulation in Water: Laboratory Studies and Implications for Natural Systems’,Aq. Sciences 52, 32.CrossRefGoogle Scholar
  11. Liang, L., McCarthy, J. F., Jolley, L. S., McNabb, J. A. and Mehlhorn T. L.: 1993, ‘Iron Dynamics: Transformation of Fe(II)/Fe(III) during Injection of Natural Organic Matter in a Sandy Aquifer’,Geochint. Cosmochim. Acta 57, 1987.CrossRefGoogle Scholar
  12. Liebeskind, W. and Lehrieder, E.: 1992, ‘Der Lehester Schieferbergbau - Geschichte, Geologie und Mineralogie’,Aufschluß 43, 139.Google Scholar
  13. McKnight, D. M. and Bencala, K. E.: 1990, ‘The chemistry of Iron, Aluminium, and Dissolved Organic Material in Three Acidic, Metal-enriched, Mountain Stream, as Controlled by Watershed and In-stream Processes’,Water Res. Res. 26, 3087.CrossRefGoogle Scholar
  14. McKnight, D. M. and Feder, G. L.: 1984, ‘The Ecological Effect of Acid Conditions and Precipitation of Hydrous Metal Oxides in a Rocky Mountain Stream’,Hydrohiol. 119, 129.CrossRefGoogle Scholar
  15. McKnight, D. M., Bencala, K. E., Zellweger, G. W., Aiken, G. R., Feder, G. L. and Thorn, K. A.: 1992, ‘Sorption of Dissolved Organic Carbon by Hydrous Aluminium and Iron Oxides Occurring at the Confluences of Deer Creek with the Snake River’,Summit County, Colorado, Environ. Sci. Technol. 26, 1388.CrossRefGoogle Scholar
  16. Nordstrom, D. K.: 1982, ‘The Effect of Sulfate on Aluminum Concentrations in Natural Waters: some Stability Relations in the System A1203-SO3-H20 at 298 K,Geochim. Cosmochim. Acta 46, 681.CrossRefGoogle Scholar
  17. Nordstrom, D. K. and Ball, J. W.: 1986, ‘The Geochemical Behaviour of Aluminum in Acidified Surface Waters’,Science 232, 54.Google Scholar
  18. Parsons, J. D.: 1977, ‘Effects of Acid Mine Water on Aquatic Ecosystems’,Water, Air, and Soil Pollut. 7, 332.CrossRefGoogle Scholar
  19. Pfeiffer, H.: 1959, ‘Der Oertelsbruch bei Lehesten’,Z. angew. Geol. 9, 399.Google Scholar
  20. Prenzel, J.: 1994, ‘Sulfate Sorption in Soils under Acid Deposition: Comparison of Two Modelling Approaches’,J. Environ. Qual. 23, 188.CrossRefGoogle Scholar
  21. Sandhage-Hofmann, A., Kaupenjohann, M., Peiffer, S. and Beierkuhnlein, C.: 1995, ‘Impact of High Aluminium Loadings on a Small Catchment Area in North-East Thuringia as Affected by Acid Mine Drainage. 111. Soil Chemistry and Plant Nutrition’,Water; Air; and Soil Pollut., in prep.Google Scholar
  22. Schramel, P., Wolf, A., Seif, R. and Klose, B. J.: 1980, ‘Eine neue Apparatur zur Druckveraschung von biologischem Material’,Fresenius. Z. Anal. Chem 302, 62.CrossRefGoogle Scholar
  23. Tabatai, M. A.: 1974, ‘Determination of Sulfate in Water Samples’,Sulphur Inst. J. 10, 11.Google Scholar
  24. Theobald, P. K., Lakin, H. W. and Hawkins, D. B.: 1963, ‘The Precipitation of Aluminium, Iron, and Manganese at the Junction of Deer Creek with the Snake River in Summit County, Colorado,Geochim Cosmochim. Acta 27, 121.CrossRefGoogle Scholar
  25. van Breemen, N.: 1973, ‘Dissolved Aluminum in Acid Sulfate Soils and in Acid Mine Drainage’,Soil. Sci. Soc. Aster. Proc. 37, 694.CrossRefGoogle Scholar
  26. Veerhoff, M. and Brümmer, G. W.: 1989, ‘Silicatverwitterung und Tonmineralumwandlung in Waldböden als Folge von Versauerungsprozessen’,Mitteilg. Dtsch. Bodenkundl. Gesellsch. 59, 1203.Google Scholar
  27. Zimmermann, E.: 1896, ‘Polster von Moos-Protonema in dem den Lehestener Schieferbruchhalden entsrömenden sulfatreichen Bachwasser’,Naturwiss. Wochenschrift, 444–445.Google Scholar
  28. Zimmermann, E.: 1910, ‘Blatt Lehesten. — Erläuterungen zur Geologischen Karte von Preußen and benachbarten Bundesstaaten’, Lieferung 114.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Stefan Peiffer
    • 1
  • Carl Beierkuhnlein
    • 2
  • Alexandra Sandhage-Hofmann
    • 3
  • Martin Kaupenjohann
    • 3
  • Silke Bär
    • 1
  1. 1.Limnologische ForschungsstationUniversity of BayreuthBayreuth
  2. 2.Lehrstuhl für BiogeographieUniversity of BayreuthBayreuth
  3. 3.Lehrstuhl far BodenkundeUniversity of BayreuthBayreuth

Personalised recommendations