Skip to main content
Log in

Mössbauer and positron annihilation study of tin-vacancy interaction during the recovery of a dilute Al−Sn alloy

  • Metals and Alloys
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Tin-vacancy interaction was studied in a dilute Al(Sn) alloy, quenched from 613°C to −70°C and isochronally heat treated up to 250°C, using parallel positron lifetime and Mössbauer spectroscopy.

For the interpretation of the results, a simple model was developed including tin-monovacancy tin-divacancy and tin-tetravacancy complexes as well as more complicated tin-vacancy agglomerates as important participants of the recovery process. According to this model, the changes observed in the positron lifetime and Mössbauer spectra can be explained by the gradual transformation of these complexes to simpler ones through transitional configurations.

Only two lines could be observed in the Mössbauer spectra and the results suggest that a single vacancy has minor effect on the isomer shift of the line corresponding to tin in substitutional lattice site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cs. Szeles, K. Süvegh, Z. Homonnay and A. Vértes, phys. stat. sol. (a) 103(1987)397.

    Google Scholar 

  2. L. F. Mondolfo ed., “Aluminium Alloys: Structure and Properties”, London, Butterworths (1976).

    Google Scholar 

  3. K. O. Sørensen and R. M. J. Cotterill, Acta Met., 22(1974)1331.

    Article  Google Scholar 

  4. S. Umeyama, M. Taniwaki, I. Ishida and M. Kato, J. Phys. (Paris) Colloq. 40(1979)C2–539.

    Google Scholar 

  5. A. Vértes, Cs. Szeles, M. Z. Awad and S. Nagy, Scripta Metall., 16(1982)1229.

    Article  Google Scholar 

  6. J. W. Petersen, S. Damgaard and G. Weyer, J. Phys. F11(1981)487.

    Article  ADS  Google Scholar 

  7. I. Tanaka, S. Nasu, F. E. Fujita, F. Ambe, S. Ambe and I. Okada, J. Phys. F16(1986)L151.

    Article  ADS  Google Scholar 

  8. M. Taniwaki, S. Umeyama and Y. Ishida, in “Point Defects and Defect Interactions in Metals”, ed: J. Takamura, M. Doyama and M. Kiritani, University of Tokyo Press (1982)477.

  9. H. Mehner, J. Juhász, M. Suba and A. Vértes, Radiochem. Radional. Letters 56(1982)57.

    Google Scholar 

  10. B. Bergersen and M. J. Scott, Solid State Commun. 7(1969)1203

    Article  Google Scholar 

  11. M. J. Puska and R. M. Nieminen, J. Phys. F13(1983)333.

    Article  ADS  Google Scholar 

  12. R. W. Siegel, J. Nucl. Mater. 69/70(1978)117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homonnay, Z., Süvegh, K., Szeles, C. et al. Mössbauer and positron annihilation study of tin-vacancy interaction during the recovery of a dilute Al−Sn alloy. Hyperfine Interact 45, 389–396 (1989). https://doi.org/10.1007/BF02405904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02405904

Keywords

Navigation