Advertisement

Hyperfine Interactions

, Volume 56, Issue 1–4, pp 1605–1611 | Cite as

Annealing behaviour of iron implanted zirconia

  • G. Marest
  • C. Donnet
  • J. A. Sawicki
Radiation Damage and Implantation

Abstract

A zirconia film was implanted at room temperature with 100 keV57Fe+ to a fluence of 8×1016 ions/cm2. The analysis of the Conversion Electron Mössbauer spectra shows that iron is distributed among different charge states: Fe0 (in a form of small and large metallic iron aggregates) Fe2+ and Fe4+. The evolution of the iron depth profile deduced from Rutherford backscattering measurements as well as the change in the charge states of iron as a function of annealing under argon atmosphere are presented.

Keywords

Iron Atmosphere Thin Film Zirconia Argon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zirconium in the Nuclear Industry, Proc. VIth Int. Symposium, Vancouver 1986, eds. D. Franklin and R.G. Adamson (American Soc. for Testing and Materials, Philadelphia, USA).Google Scholar
  2. [2]
    J.T.A. Roberts, in:Structural Materials in Nuclear Power Systems (Plenum Press, New York, 1981).Google Scholar
  3. [3]
    B. Cox,Oxidation of zirconium and its alloys, in:Adv. Corros. Sci. and Technol., Vol. 5 (Plenum Press, 1976).Google Scholar
  4. [4]
    J.F. Ziegler, J.P. Biersack and V. Littmark,The Stopping Range of Ions in Solids, Vol. 1 (Pergamon Press, 1985).Google Scholar
  5. [5]
    C.J. McHargue, G.C. Farlow, P.S. Sklad, C.W. White, A. Perez, N. Kornilios and G. Marest, Nucl. Instr. & Meth. in Phys. Res. B19/20 (1987) 813.Google Scholar
  6. [6]
    C.J. McHargue, Private communication.Google Scholar
  7. [7]
    G. Marest, C. Donnet, N. Moncoffre and J. Tousset, These proceedings.Google Scholar
  8. [8]
    F. Yu Babikova, A.V. Ivanov, V.V. Fillipov and V.N. Abramtsev, Sov. Phys. Crystal. 27 (1982) 236.Google Scholar
  9. [9]
    A. Perez, G. Marest, B.D. Sawicka, J.A. Sawicki and T. Tyliszczak, Phys. Rev. B 28 (1983) 1227.CrossRefADSGoogle Scholar
  10. [10]
    A.J. Burggraaf, D. Scholten and B.A. Von Hassel, Nucl. Instr. & Meth. in Phys. Res. B32 (1988) 32.CrossRefADSGoogle Scholar
  11. [11]
    J.A. Sawicki, G. Marest, B. Cox and S.R. Julian, Nucl. Instr. & Meth. in Phys. Res. B32 (1988) 79.CrossRefADSGoogle Scholar
  12. [12]
    J.A. Sawicki, G. Marest and B. Cox, in:Structure-Property Relationships in Surface-Modified Ceramics, eds C.J. McHargue et al., Vol. E-170, (NATO ASI Series) p. 209.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1990

Authors and Affiliations

  • G. Marest
    • 1
  • C. Donnet
    • 1
  • J. A. Sawicki
    • 2
  1. 1.Institut de Physique Nucléaire de LyonIN2P3-CNRS/Université Claude BernardVilleurbanne CedexFrance
  2. 2.Chalk River Nuclear LaboratoriesChalk RiverCanada

Personalised recommendations