Hyperfine Interactions

, Volume 56, Issue 1–4, pp 1569–1576 | Cite as

A CEMS investigation of57Fe implanted in Al and Cu at low temperature

  • H. de Waard
  • G. L. Zhang
Radiation Damage and Implantation


A new type of CEM-spectrometer allows in situ measurements on metal foils implanted at low temperatures. It has been used to study defect association and clustering of57Fe in Al and Cu. For57FeAl, the substitutional fraction (fs) in samples implanted at 120 K is somewhat smaller than expected for a random impurity distribution but much larger than after room temperature implantation. For57FeCu,fs for samples implanted at 120 K is less than 0.5 of the value expected for a random distribution and it falls to zero after annealing at 600 K, where more extensive Fe clustering occurs. Vacancy trapping in stage III does not contribute significantly to the observed defect sites.


Thin Film Random Distribution Defect Site CEMS Metal Foil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B.D. Sawicka, M. Drwiega, J.A. Sawicki and J. Stanek, Hyp. Int. 5 (1978) 147.CrossRefGoogle Scholar
  2. [2]
    B.D. Sawicka and J.A. Sawicki,Mössbauer Spectroscopy II, ed. U. Gonser (Springer, Berlin 1981) p. 139.Google Scholar
  3. [3]
    B.D. Sawicka and J.A. Sawicki, Nucl. Instr. Meth. 209/210 (1983) 799.CrossRefGoogle Scholar
  4. [4]
    G. Longworth and R. Jain, J. Phys. F. 8 (1978) 351.CrossRefADSGoogle Scholar
  5. [5]
    R. Jain and G. Longworth, J. Phys. F. 8 (1978) 363.CrossRefADSGoogle Scholar
  6. [6]
    S. Nasu, U. Gonser, P.H. Shingu and Y. Murakami, J. Phys. F. 4 (1974) L24.CrossRefADSGoogle Scholar
  7. [7]
    B. Window, J. Phys. C 3 (1970) S323.CrossRefADSGoogle Scholar
  8. [8]
    A. Azzam and O. Meyer, Nucl. Instr. Meth. B 14 (1986) 268.CrossRefADSGoogle Scholar
  9. [9]
    M.K. Kloska and O. Meyer, Nucl. Instr. Meth. B14 (1986) 268.CrossRefADSGoogle Scholar
  10. [10]
    A. Turos, A. Azzam, M.K. Kloska and O. Meyer, Nucl. Instr. Meth. B19/20 (1987) 123.Google Scholar
  11. [11]
    M.K. Kloska and O. Meyer, Nucl. Instr. Meth. B 19/20 (1987) 140.Google Scholar
  12. [12]
    A. Turos and O. Meyer, Mater. Sci. Rep. 2 (1987) 373.CrossRefGoogle Scholar
  13. [13]
    H. de Waard, S.R. Reintsema and L.C. Feldman, Hyp. Int. 4 (1978) 720.CrossRefGoogle Scholar
  14. [14]
    H. de Waard, Hyp. Int. 40 (1988) 31.CrossRefGoogle Scholar
  15. [15]
    S. Nasu, U. Gonser and R.S. Preston, J. de Phys. 41 (1980) C1–385.Google Scholar

Copyright information

© J.C. Baltzer A.G. Scientific Publishing Company 1990

Authors and Affiliations

  • H. de Waard
    • 1
  • G. L. Zhang
    • 1
  1. 1.Laboratorium voor Algemene Natuurkunde and Materials Science CentreUniversity of GroningenNetherlands

Personalised recommendations