Advertisement

Calcified Tissue International

, Volume 36, Issue 1, pp 200–205 | Cite as

Effects of vitamin D3 metabolites on calcium fluxes in intact chicken skeletal muscle and myoblasts culturedin vitro

  • Daniel L. Giuliani
  • Ricardo L. Boland
Laboratory Investigations

Summary

25-hydroxycholecalciferol (25OHD3) and 1,25-dihydroxycholecalciferol (1,25(OH)2D3) at physiological concentrations exerted direct effects on Ca fluxes in cultured vitamin D-deficient chick soleus muscle and myoblasts. Isotopic desaturation curves of soleus muscle prelabeled with45Ca indicated that the action of 25OHD3 is localized in a slow-exchangeable Ca pool where it stimulates net Ca uptake. On the other hand, the predominant effects of 1,25(OH)2D3 consist in an increase of the rate constant of Ca efflux of this pool and in an increase of net Ca uptake in a fast-exchangeable pool. 24,25-dihydroxycholecalciferal proved to be inactive on both Ca uptake and efflux. In addition, 1,25(OH)2D3 significantly increased45Ca labeling of cultured chick myoblasts. These effects were accompanied by changes in the growth and differentiation of the cultures. The results suggest a direct involvementin vivo of 25OHD3 and 1,25(OH)2D3 on muscle cellular calcium.

Key words

Vitamin D3 metabolites Cellular calcium Muscle Myoblasts Tissue culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith R, Stern G (1967) Myopathy, osteomalacia and hyperparathyroidism. Brain 90:593–602PubMedGoogle Scholar
  2. 2.
    Dent CE, Smith R (1969) Nutritional osteomalacia. Q J Med 38:195–209PubMedGoogle Scholar
  3. 3.
    Mardsen CD, Reynolds EH, Parsons V, Harris R, Duchen L (1973) Myopathy associated with anticonvulsant osteomalacia. Br Med J 4:526–527CrossRefGoogle Scholar
  4. 4.
    Holmes AM, Enoch BA, Taylor JL, Jones ME (1973) Occult rickets and osteomalacia amongst the Asian immigrant population. Q J Med 42:125–149Google Scholar
  5. 5.
    Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D (1974) Myopathy in chronic renal failure. Q J Med 43:509–523PubMedGoogle Scholar
  6. 6.
    Stanbur SW (1965) Muscular disorders of metabolic bone disease. Manch Med Gaz 45:16–19Google Scholar
  7. 7.
    Henderson RG, Rusell RGG, Ledigham JGG, Smith R, Oliver DC, Walton RJ, Small DG, Preston C, Warner GT, Norman AW (1974) Effects of 1,25-dihydroxycholecalciferol on calcium absorption, muscle weakness and bone disease in chronic renal failure. Lancet 1:379–380CrossRefPubMedGoogle Scholar
  8. 8.
    Peacock M, Heyburn PJ (1977) Effect of Vitamin D metabolites on proximal muscle weakness (abstract). Calcif Tissue Res 24:R20Google Scholar
  9. 9.
    Brickman AS, Coburn JW, Massry SG, Norman AW (1974) 1,25-dihydroxyvitamin D3 in normal man and patients with renal failure. Ann Intern Med 80:161–168PubMedGoogle Scholar
  10. 10.
    Heimberg KW, Matthews C, Ritz E, Augustin J, Hasselbach W (1976) Active Ca transport of sarcoplasmic reticulum during experimental uremia. Eur J Biochem 61:207–213CrossRefPubMedGoogle Scholar
  11. 11.
    Matthews C, Heimberg KW, Ritz E, Agostini B, Fritzche J, Hasselbach W (1977) Effect of 1,25-dihydroxycholecalciferol on impaired calcium transport by the sarcoplasmic reticulum in experimental uremia. Kidney Int 11:227–235PubMedGoogle Scholar
  12. 12.
    Boland R, Boland AR de, Ritz E, Hasselbach W (1983) Effect of 1,25-dihydroxycholecalciferol on sarcoplasmic reticulum calcium transport in strontium-fed chicks. Calcif Tissue Int 35:190–194PubMedGoogle Scholar
  13. 13.
    Boland R, Matthews C, Boland AR de, Ritz E, Hasselbach W (1983) Reversal of decreased phosphorylation of sarcoplasmic reticulum calcium transport ATPase by 1,25-dihydroxycholecalciferol in experimental uremia. Calcif Tissue Int 35:195–201PubMedGoogle Scholar
  14. 14.
    Wasserman RH, Taylor AM (1973) Intestinal absorption of phosphate in the chick: effect of vitamin D3 and other parameters. J Nutr 103:586–599PubMedGoogle Scholar
  15. 15.
    Paul J (1975) Cell and tissue culture. Churchill Livingstone, Great BritainGoogle Scholar
  16. 16.
    Birge SJ, Haddad JG (1975) 25-Hydroxycholecalciferol stimulation of muscle metabolism. J Clin Inv 56:1100–1107Google Scholar
  17. 17.
    O'Neill MC, Stockdale FE (1972) Kinetic analysis of myogenesis in vitro. J Cell Biol 52:52–65CrossRefPubMedGoogle Scholar
  18. 18.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  19. 19.
    Borle AB (1975) Methods for assessing hormone effects on calcium fluxes in vitro. Methods in enzymology 39:513–573PubMedGoogle Scholar
  20. 20.
    Snedecor GW, Cochran WG (1967) Statistical Methods. The Iowa State University Press, USAGoogle Scholar
  21. 21.
    Borle AB (1972) Kinetic analysis of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells. J Membrane Biol 10:45–46CrossRefGoogle Scholar
  22. 22.
    Eilam Y, Szydel N, Harel A (1980) Effects of vitamin D metabolites on cellular Ca2+ and on Ca transport in primary cultures of bone cells. Mol Cell Endocrinol 19:263–273CrossRefPubMedGoogle Scholar
  23. 23.
    Ross FP, Palxas G, Pettifor JM (1982) Changes in sarcolemmal calcium binding and uptake in skeletal muscle of vitamin D deficiency rats. Fifth Workshop on Vitamin D, abstr p 214Google Scholar
  24. 24.
    Pleasure D, Wyszynski B, Summer A, Schotland D, Feldmann B, Nugent N, Hitz K (1979) Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Invest 64:1157–1167PubMedCrossRefGoogle Scholar
  25. 25.
    Boland AR de, Gallego S, Boland RL (in press) Skeletal muscle plasma cell membranes: effects of vitamin D3 on phosphate and calcium transport and composition. Biochim Biophys ActaGoogle Scholar
  26. 26.
    Bauman VK, Valinietse MY, Babarykin DA (1982) The effect of vitamin D3 and 1,25(OH)2-D3 on Ca content in chick's skeletal muscle. In: Norman AW et al (eds) Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. Walter de Gruyter, Berlín, pp 1205–1207Google Scholar
  27. 27.
    Fontaine O, Matsumoto T, Simoniescu M, Goodman DBP, Rasmussen H (1979) Fundamental actions of 1,25-dihydroxy-cholecalciferol on intestinal ion transport do not involve gene activation. In: Norman AW et al (eds) Vitamin D, basic research and its clinical application, Walter de Gruyter, Berlín, pp 693–701Google Scholar
  28. 28.
    Dani AM, Cittadini A, Calviello G, Festuccia G, Terranova T (1978) Calcium metabolism in intact isolated thymocytes. Mol Cell Biochem 22:139–145CrossRefPubMedGoogle Scholar
  29. 29.
    Van der Bosch J, Schudt CHR, Pette D (1973) Influence of temperature, cholesterol, dipalmitoyllecithin and Ca2 on the rate of muscle cell fusion. Exptl Cell Res 82:433–438CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Daniel L. Giuliani
    • 1
  • Ricardo L. Boland
    • 1
  1. 1.Departmento de Ciencias NaturalesUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations