Calcified Tissue International

, Volume 35, Issue 1, pp 821–823 | Cite as

Amorphous calcium phosphate in casein micelles of bovine milk

  • T. C. A. McGann
  • R. D. Kearney
  • W. Buchheim
  • A. S. Posner
  • F. Betts
  • N. C. Blumenthal
Rapid Communication


The calcium phosphate remaining after hydrazine deproteination of casein micelles isolated from bulk skim milk exhibits under the electron microscope a very fine and uniform granularity being formed by small subunits with a true diameter of approximately 2.5 nm. This material, which is about 10 percent by weight citrate, termed calcium phosphate citrate (CPC) complex, also contains Mg and Zn at molar ratios of 0.03 and 0.003 respectively. Radial distribution function (RDF) and infrared analyses show that CPC is a Mg-containing amorphous calcium phosphate (ACP) similar to synthetic and cytoplasmic ACP. Presence of CPC in casein micelles as an amorphous colloid bonded with phosphoproteins provides the means for storing in milk large amounts of Ca (16 mM) and Pi (10 mM) in a readily utilizable form but at a higher ion concentration than found in biological solutions.

Key Words



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pyne, G.T., McGann, T.C.A.: The colloidal phosphate of milk. II. Influence of citrate. J. Dairy Res. 27: 9–17, 1960.Google Scholar
  2. 2.
    McGann, T.C.A., Pyne, G.T.: The colloidal phosphate of milk. III. Nature of its association with casein.Google Scholar
  3. 3.
    Richardson, T., McGann, T.C.A., Kearney, R.D.: Levels and location of adenosine 5′-triphosphate in bovine milk. J. Dairy Res.47: 91–96, 1980.PubMedGoogle Scholar
  4. 4.
    Lehninger, A.L.: Mitochondria and biological mineralization processes: An exploration. Horizons Biochem. Biophys.4: 1–30, 1977.Google Scholar
  5. 5.
    Betts, F., Posner, A.S.: A structural model for ACP. Trans. Amer. Cryst. Assoc.10: 73–84, (1974).Google Scholar
  6. 6.
    Termine, J.D., Eanes, E.D., Greenfield, D.J., Nylen, M.U.: Hydrazine-deproteinated bone mineral. Calc. Tiss. Res.12: 73–90, (1973).CrossRefGoogle Scholar
  7. 7.
    Buchheim, W.: A comparison of the microstructure of dried milk products by freeze-fracturing powder suspensions in non-aqueous media. Scanning Electron Microsc. 111: 493–502, 1981.Google Scholar
  8. 8.
    Thomas, R.S., Greenwalt, J.W.: Micorincineration, electron microscopy, and electron diffraction of calcium phosphate-loaded mitochondria. J. Cell Biol.39: 55–57, 1968.CrossRefPubMedGoogle Scholar
  9. 9.
    Hurley, L.S., Lonnerdal, B.: Zinc Binding in human milk: citrate versus Picolinate. Ntr. Revs.40: 65–71, 1982.CrossRefGoogle Scholar
  10. 10.
    Brudevold, F., Steadman, L.T., Spinelli, M.A., Amdur, B.H., Gron, P.: A study of zinc in human teeth. Arch. Oral Biol.8:135–144, 1963.CrossRefPubMedGoogle Scholar
  11. 11.
    Calhoun, N.R., Smith, Jr., J.C., Becker, K.L.: The role of zinc in bone metabolism. Clin. Orthop.103: 212–233, 1974.PubMedGoogle Scholar
  12. 12.
    Blumenthal, N.C., Betts, F., Posner, A.S.: Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif. Tiss. Res.23:245–250, 1977.CrossRefGoogle Scholar
  13. 13.
    Meyer, J.L., Angino, E.E.: The role of trace metals in calcium urolithiasis. Invest. Urol.14: 347–350, 1977.PubMedGoogle Scholar
  14. 14.
    Knoop, A.M., Frede, E., Precht, D.: Die submikroskopische struktur naturlicher und kunstlicher casein micellen. Milchwissenschaft.34: 129–131, 1979.Google Scholar
  15. 15.
    Brecevic, L.J. Furedi-Milhofer, H.: Precipitation of calcium phosphates from electrolyte solutions. V. The influence of citrate ions. Calcif. Tissue Int.28: 131–136, 1979.PubMedGoogle Scholar
  16. 16.
    Schmidt, D.G., Buchheim, W.: On the size of small protein particles determined by electron microscopy of unidirectionally shadowed freeze-etched preparations. J. Microsc.126: 347–351, 1982.PubMedGoogle Scholar
  17. 17.
    Robinson, R.A., Watson, M.L.: Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann. N.Y. Acad. Sci.60: 596–628, 1955.PubMedGoogle Scholar
  18. 18.
    Bonnuci, E.: Fine structure and histochemistry of "calcifying globules" in epiphyseal cartilage. Z. Zellforsch103: 192–217, 1970.CrossRefGoogle Scholar
  19. 19.
    Knoop, A.M., Knoop, E., Wiechen, A.: Substructure of synthetic casein micelles. J. Dairy Res.46: 347–350, 1979.PubMedGoogle Scholar
  20. 20.
    Betts, F., Blumenthal, N.C., Posner, A.S., Becker, G.L., Lehninger, A.L.: Atomic structure of intracellular amorphous calcium deposits. Proc. Nat Acad. Sci.72: 2088–2090, 1975.PubMedGoogle Scholar
  21. 21.
    Posner, A.S.: Intramitochondrial storage of stable amorphous calcium phosphate. Ann. N.Y. Acad. Sci.307: 248–249, 1978.PubMedGoogle Scholar
  22. 22.
    Pyne, G.T.: Some aspects of the physical chemistry of the salts in milk. J. Dairy Res.29: 101–130, 1962.CrossRefGoogle Scholar
  23. 23.
    Blumenthal, N.C., Betts, F., Posner, A.S.: Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif. Tiss. Res. 18: 18–90, 1975.Google Scholar
  24. 24.
    Holt, C., Hasnain, S.S., Hukins, D.W.L. Structure of bovine milk calcium phosphate determined by x-ray absorption spectroscopy. Biochimica et Biophysica Acta,719: 299–303, 1982.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • T. C. A. McGann
    • 1
  • R. D. Kearney
    • 1
  • W. Buchheim
    • 2
  • A. S. Posner
    • 3
  • F. Betts
    • 3
  • N. C. Blumenthal
    • 3
  1. 1.Agricultural Institute, Moorepark Research Centre, FermoyCo. CorkRepublic of Ireland
  2. 2.Institut fuer Chemie Und PhysikBundesanstalt fuer MilchforschungKielFederal Republic of Germany
  3. 3.Hospital For Special SurgeryCornell University Medical CollegeNew YorkUSA

Personalised recommendations